Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика.docx
Скачиваний:
5213
Добавлен:
22.03.2016
Размер:
1.64 Mб
Скачать
  1. Закон Био-Савара-Лапласа. Эквивалентность движущегося заряда и элемента тока. Примеры расчета магнитного поля.

Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791—1841). Результаты этих опытов были обобщены выдающимся французским математиком и физиком П. Лапласом.

Закон Био — Савара — Лапласа для проводника с током I, элемент dl  которого создает в некоторой точке А (рис. 164) индукцию поля dB, записывается в виде

                                                      (110.1)

где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r—радиус-вектор, проведанный из элемента dlпроводника в точку А поля, r — модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление dB, если поступательное движение винта соответствует направлению тока в элементе.

Модуль вектора dB определяется выражением

                                                    (110.2)

где a — угол между векторами dl и r.

Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:

                                                      (110.3)

Расчет характеристик магнитного поля (В и Н) по приведенным формулам в общем случае сложен. Однако если распределение тока имеет определенную сим­метрию, то применение закона Био — Савара — Лапласа совместно с принципом суперпозиции позволяет просто рассчитать конкретные поля. Рассмотрим два примера.

  • Магнитное поле прямого провода с током.

  • Магнитное поле прямого тока — тока, текущего по тонкому прямому проводу бесконечной длины (рис. 165). В произвольной точке А, удаленной от оси проводника на расстояние R, векторы dB от всех элементов тока имеют одинаковое направление, перпендикулярное плоскости чертежа («к вам»). Поэтому сложение векторов dB можно заменить сложением их модулей. В качестве постоянной интегрирования выберем угол a (угол между векторами dl и r), выразив через него все остальные величины. Из рис. 165 следует, что

  • (радиус дуги CD вследствие малости dl равен r, и угол FDC по этой же причине можно считать прямым). Подставив эти выражения в (110.2), получим, что магнитная индукция, создаваемая одним элементом проводника, равна

  •                                                        (110.4)

  • Так как угол a  для всех элементов прямого тока изменяется в пределах от 0 до p, то, согласно (110.3) и (110.4),

  • Следовательно, магнитная индукция поля прямого тока

  •                                                                        (110.5)

  • Магнитное поле на оси кругового тока.

Магнитное поле в центре кругового проводника с током (рис. 166). Как следует из рисунка, все элементы кругового проводника с током создают в центре магнитные поля одинакового направления — вдоль нормали от витка. Поэтому сложение векторов dB можно заменить сложением их модулей. Так как все элементы проводника перпендикулярны радиусу-вектору (sina =1) и расстояние всех элементов проводника до центра кругового тока одинаково и равно R, то, согласно (110.2),

Тогда

Следовательно, магнитная индукция поля в центре кругового проводника с током

  • Магнитное поле катушки с током.

  • Магнитное поле катушки с током возникает в кольцевой катушке (рис. 1) с W витками, равномерно распределенными вдоль немагнитного сердечника при подключении ее к источнику тока. Увеличение магнитной индукции поля достигается увеличением числа витков катушки и размещением ее на стальном сердечнике, магнитные токи которого, создавая свое поле, увеличивают результирующее поле катушки. Поверхность, ограниченная окружностью радиуса R, совпадающей со средней магнитной линией, пронизывается полным током ΣI = IW. Вследствие симметрии напряженность поля Н во всех точках, лежащих на средней магнитной линии, одинакова, поэтому мдс Fм = Hl = IW = H2πR. По закону полного тока Hl = IW, откуда напряженность магнитного поля на средней магнитной линии, совпадающей с осевой линией кольцевой катушки, H = IW / l , а магнитная индукция B = μaH = μaIW / l = 125μIW / l * 10-8.

  • При R1 - R2 << Rl магнитную индукцию на осевой линии с достаточной точностью можно считать равной среднему значению ее, и, следовательно, магнитный поток сквозь поперечное сечение катушки Φ = BS = μaIWS / l . Переписав это уравнение в виде Φ = IW / (μaSl) = Fм / Rм , получим выражение, аналогичное уравнению закона Ома для электрической цепи, т. е. полный магнитный поток равен отношению мдс к магнитному сопротивлению цепи. Цилиндрическую катушку (рис. 1, б) можно рассматривать как часть кольцевой катушки с большим радиусом и с обмоткой, расположенной только на части сердечника, длина которой равна длине катушки. Напряженность поля и магнитной индукции на осевой линии в центре цилиндрической катушки определяется по формулам, которые в этом случае являются приближенными и применимы для катушек.

  1. Магнитный поток. Теорема о магнитном потоке через замкнутую поверхность. Вихревой характер магнитного поля.

  2. Магнитный поток. Работа перемещения витка с током в магнитном поле

  3. Индукция и напряженность магнитного поля. Закон полного тока.

  4. Примеры расчета магнитного поля с помощью закона полного тока.

  • Магнитное поле прямого провода с током.

  • Магнитное поле цилиндрического проводника.

  • Магнитное поле плоского проводника больших размеров.

  • Магнитное поле длинного соленоида.

  1. Магнитное поле в зазоре тороидальной катушки. Магнитная цепь и магнитодвижущая сила. «Закон Ома» для магнитной цепи.

  2. Индукция и напряженность магнитного поля. Граничные условия для векторов индукции и напряженности. Преломление линий магнитного поля на границе раздела двух сред.

  3. Явление электромагнитной индукции. Закон Фарадея и правило Ленца. Вихревое электрическое поле. Циркуляция напряженности в вихревом электрическом поле.

  4. Явление самоиндукции. Магнитный поток и потокосцепление. Индуктивность. Самоиндукция и взаимная индукция. Примеры проявления самоиндукции.

ЭДС индукции, возникающая в самом же контуре, называется ЭДС самоиндукции, а само явление – самоиндукция. Если же ЭДС индукции возникает в соседнем контуре, то говорят о явлении взаимной индукции. Ясно, что природа явления одна и та же, а разные названия использованы для того, чтобы подчеркнуть место возникновения ЭДС индукции. Явление самоиндукции открыл американский ученый Дж. Генри.

Ток I, текущий в любом контуре, создает магнитный поток Ф, пронизывающий этот же контур. При изменении I будет изменяться Ф. Следовательно, в контуре будет наводиться ЭДС индукции.

Т.к. магнитная индукция В пропорциональна току I  

следовательно

      где L – коэффициент пропорциональности, названный

индуктивностью контура.

      Если внутри контура нет ферромагнетиков, то

 (т.к. ).

      Индуктивность контура L зависит от геометрии контура, числа

витков, площади витка контура.

      За единицу индуктивности в СИ принимается индуктивность такого

контура, у которого при токе  возникает полный поток .

Эта единица называется Генри (Гн).

Магнитный поток— поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

при этом векторный элемент площади поверхности определяется как

где  — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади:

где α — угол между вектором магнитной индукции и нормалью к плоскости площади.

Магнитный поток через контур также можно выразить через циркуляцию векторного потенциала магнитного поля по этому контуру:

потокосцепление (полный магнитный поток) — физическая величина, представляющая собой суммарный магнитный поток, сцепляющийся со всеми витками катушки индуктивности.

отокосцепление численно равно сумме магнитных потоков, проходящих через каждый виток катушки, т.е. при количестве витков N и одинаковом магнитном потоке в каждом витке потокосцепление можно определить как где — магнитный поток одного витка [ Вб ].

В идеальном соленоиде все магнитные силовые линии проходят через каждый виток (т.е. не пересекают боковую поверхность соленоида), и, следовательно, магнитный поток каждого витка одинаков. Однако на практике магнитные потоки в витках катушки отличаются и величина потокосцепления определяется по формуле:

где:
 — количество витков;
 — номер витка, с которым сцеплен поток


В случае, если катушка имеет ферромагнитный сердечник, потокосцепление можно определить по формуле:

где — магнитный поток через магнитопровод (сердечник) катушки.


Величина потокосцепления, помимо магнитного потока, имеет связь с током I в индуктивности, определяющуюся выражением:

где — индуктивность катушки [ Гн ].


Эта формула выражает принцип непрерывности во времени потокосцепления катушки индуктивности.

Индкутивность (или коэффициент самоиндукции) — коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током через поверхность[1], краем которой является этот контур.[2][3][4].

В формуле

 — магнитный поток,  — ток в контуре,  — индуктивность.

Через индуктивность выражается ЭДС самоиндукции в контуре, возникающая при изменении в нём тока[4]:

.

При заданной силе тока индуктивность определяет энергию магнитного поля, создаваемого этим током[4]:

.

Взаимоиндукция (взаимная индукция) — возникновение электродвижущей силы (ЭДС индукции) в одном проводнике вследствие изменения силы тока в другом проводнике или вследствие изменения взаимного расположения проводников. Взаимоиндукция — частный случай более общего явления — электромагнитной индукции.

 Возьмем два контура, расположенные недалеко друг от друга, как это показано на рисунке 5.4.

В первом контуре течет ток . Он создает магнитный поток, который пронизывает и витки второго контура.

При изменении тока  во втором контуре наводится ЭДС индукции:

 Аналогично, ток  второго контура создает магнитный поток, пронизывающий первый контур:

И при изменении тока  наводится ЭДС:

Контуры называются связанными, а явление – взаимной индукцией. Коэффициенты  и  называются взаимной индуктивностью, или коэффициентами взаимной индукции. Причём

Замыкание цепи


 


При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи ( вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

Размыкание цепи


 


При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток ( стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.