Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tr.docx
Скачиваний:
251
Добавлен:
20.03.2016
Размер:
1.22 Mб
Скачать

24.Схема замещения ам

При практических расчетах вместо реального асинхронного двигателя, на схеме его заменяют эквивалентной схемой замещения, в которой электромагнитная связь заменена на электрическую. При этом параметры цепи ротора приводятся к параметрам цепи статора.

По сути, схема замещения асинхронного двигателя аналогична схеме замещения трансформатора. Различие в том, что у асинхронного двигателя электрическая энергия преобразуется в механическую энергию (а не в электрическую, как это происходит в трансформаторе), поэтому на схеме замещения добавляют переменное активное сопротивление r2'(1-s)/s, которое зависит от скольжения. В трансформаторе, аналогом этого сопротивления является сопротивление нагрузки Zн.

Величина скольжения определяет переменное сопротивление, например, при отсутствии нагрузки на валу, скольжение практически равно нулю s≈0, а значит переменное сопротивление равно бесконечности, что соответствует режиму холостого хода. И наоборот, при перегрузке двигателя, s=1, а значит сопротивление равно нулю, что соответствует режиму короткого замыкания.

 В Г-образной схеме, намагничивающая ветвь вынесена к входным зажимам. Таким образом, вместо трех ветвей получают две ветви, первая – намагничивающая, а вторая – рабочая. Но данное действие требует внесение дополнительного коэффициента c1, который представляет собой отношение напряжения подводимого к двигателю, к ЭДС статора.

 

  Величина c1 приблизительно равна 1, поэтому для максимального упрощения, на практике принимают значение c1≈1. При этом следует учитывать, что значение коэффициента c1 уменьшается с увеличением мощности двигателя, поэтому более точное приближение будет соответствовать более мощному двигателю.

Другой источник

Для расчета характеристик асинхронного двигателя и исследования различных режимов его работы удобно использовать схемы замещения.

При этом реальная асинхронная машина с электромагнитными связями между обмотками заменяется относительно простой электрической цепью, что позволяет существенно упростить расчет характеристик.

С учетом того, что основные уравнения асинхронного двигателя (2.25) аналогичны таким же уравнениям трансформатора (1.23), схема замещения двигателя такая же, как и у трансформатора, представлена она на рисунке 2.6.

Рисунок 2.6 – T-образная схема замещения асинхронного двигателя

 

Изображенная на рисунке 2.6 схема называется T-образной схемой замещения (сопротивления ,иобразуют буквуТ), в ней: r1 и x1– активное и индуктивное сопротивления фазной обмотки статора; и– при-веденные активное и индуктивное сопротивления фазной обмотки ротора.

Сопротивление определяет параметры намагничивающей ветви схемы. Индуктивная составляющаяявляется индуктивным сопротивлением взаимной индукции. Посредством сопротивленияучитываются магнитные потери в стали статора. Как и в трансформаторе, сопротивлениезависит от подведенного напряженияU1. С повышением U1 сопротивление уменьшается.

При расчете характеристик асинхронного двигателя с использованием схемы замещения ее параметры должны быть известны. Схема рисунка 2.6 полностью отражает физические процессы, происходящие в двигателе, но имеет узловую точку между сопротивлениями и, что усложняет расчет токов при различных значениях скольжения. Поэтому большое практическое применение для анализа режимов работы асинхронных машин находит другаясхема замещения, в которой намагничивающая ветвь подключена непосредственно на входе схемы, куда подводится напряжение U1 (рисунок 2.7). Данная схема называется Г-образной схемой замещения.

Рисунок 2.7 – Г-образная схема замещения асинхронного

двигателя (а) и ее упрощенный вариант (б)

 

На рисунке 2.7, а комплексный коэффициент

 или .

Так как x1 >> xm, то незначительно больше единицы ().

Если пренебречь коэффициентом , то получим упрощеннуюГ-образную схему замещения (рисунок 2.7, б), которую используют при практических расчетах асинхронных двигателей средних и больших мощностей. При этом погрешность в расчете не превышает 1–5%.

Необходимость учета коэффициента возникает главным образом при анализе асинхронных двигателей небольшой мощности.

Согласно (2.22) активное сопротивление обмотки ротора двигателя разбито на две части: . Первое сопротивление не зависит от режима работы, и потери в нем равны электрическим потерям реального ротора. Второе сопротивление зависит от скольжения, и мощность, выделяемая в нем, численно равна механической мощности двигателя Рмех. Следовательно сопротивлениев схеме замещения выполняет роль нагрузки двигателя.

Из упрощенной Г-образной схемы замещения можно определить приведенный ток роторной обмотки

.                                       (2.26)

В дальнейшем (2.26) используется при выводе уравнения электромагнитного момента асинхронного двигателя.

25. энергетическая диаграмма асинхронного двигателя Все преобразования энергии и потери, которые происходят в асинхронном двигателе, можно иллюстрировать при посредстве так называемой  "энергетической" диаграммы.

На фиг. 88 показана такая диаграмма в форме "потока энергии", который течет слева направо. Как видно из фиг. 88, этот "поток" состоит из ряда "рукавов". Притекающая к статору асинхронного двигателя из сети электрическая энергия Р1 изображена на фиг. 88 в виде потока наибольшей ширины. По мере течения направо главное "русло" этого потока делается все уже и уже.

"Рукав" потокаVFe изображает потери железа в двигателе (токи Фуко и гистерезис).

Рукав потока V1 =m1I12•r1 изображает потери меди в статоре.

Потери меди в роторе m2 •I22 •r2 изображены рукавом потокаV2 и, наконец, рукав потокаVρ изображает механические потери.

Таким образом притекающая к статору мощность Р1 оказывается больше тормозной мощности двигателяР2 на величину суммарных потерь фиг. 88.

На диаграмме фиг. 88, кроме того, очень наглядно представлены весьма характерные в теории асинхронных двигателей величины мощности Р'2 иPs.

Фиг. 88. Энергетическая диаграмма асинхронного двигателя

а) Мощность Р'2 есть мощность ротора; эта мощность меньше мощности, подведенной   к   статору,   на   величину суммы потерьVFe+ V1 +V2; если из мощности ротораР2 вычесть мощность, соответствующую механическим потерямVρ, то получится мощность    на валу   двигателяW2.

b) Мощность Ps носит обычно название мощности вращающегося потока;Ps равно сетевой мощностиР1 за   вычетом   суммарных потерь в статоре

VFe + V1.

Мощность Ps является, как будет видно ниже, весьма характерной величиной в теории асинхронных двигателей.

25.вопрос Энергетическая диаграмма асинхронного двигателя

Энергетическая диаграмма позволяет судить о характере распределения мощности, потребляемой двигателем из сети. Ее можно получить с помощью векторной диаграммы (рис.4.9). При работе асинхронный двигатель потребляет из сети активную мощность . Из векторной диаграммы можно получить следующие соотношения:С учетом этих соотношений выражение для мощности  преобразуется к виду . Отсюда следует, что мощность  расходуется в статоре на покрытие электрических потерь в обмотке статора, и на покрытие потерь в стали, . Остальная мощность поступает через воздушный зазор в ротор. Эта мощность определяет электромагнитный момент двигателя, поэтому ее называют электромагнитной мощностью  . Из векторной диаграммы можно получить следующее соотношение:, поэтому для электромагнитной мощности справедливо второе выражение:. Часть электромагнитной мощности, как мы выяснили выше, теряется в виде электрических потерь в обмотке ротора, , а остальная часть мощности  преобразуется в механическую мощность . Часть механической мощности  теряется внутри самой машины в виде механических потерь магнитных потерь  и добавочных потерь . Механические потери включают потери на трение и на вентиляцию. Их расчет выполняется по эмпирическим формулам. Магнитные потери  обычно малы и отдельно не определяются , а учитываются в  вместе с потерями в стали статора. Добавочные потери вызваны в основном высшими гармониками магнитных полей. Они трудно поддаются расчету. Поэтому добавочные потери оценивают приближенно величиной 0,5% от номинальной мощности двигателя. Полезная мощность на валу двигателя

.

В соответствии с изложенным энергетическую диаграмму двигателя можно представить в виде, показанном на рис. 4.10. Сумма потерь  определяет КПД двигателя . КПД двигателей мощностью от 1 кВт до 1000 кВт лежит в пределах 

26. вопрос Векторная диаграмма асинхронного двигателя

Для построения векторной диаграммы асинхронного двигателя необходимо чтобы параметры цепи ротора были приведены к цепи статора. Это достигается заменой числа витков одной фазной обмотки w2, с числом фаз m2 и обмоточным коэффициентом kоб2 на w1, m1, kоб1.

  Энергетические параметры должны быть пересчитаны правильно, для того чтобы сохранить энергетические соотношения в двигателе.

  ЭДС приведенной вторичной обмотки

  Коэффициент трансформации токов 

  Отсюда приведенный ток вторичной обмотки

  В асинхронном двигателе с короткозамкнутым ротором числа фаз m1 и m2 не равны, потому что каждый стержень короткозамкнутой обмотки рассматривается как отдельная фаза, число витков такой обмотки w2=0.5, а число фаз равно числу стержней m2=Z2. Обмоточный коэффициент для такой обмотки kоб2=1. Исходя из этого ke≠ki, в отличие от трансформатора.

  Активное и индуктивное сопротивления вторичной обмотки

   Угол сдвига фаз между E2’ и I2’ 

  Уравнения токов, напряжений статора и ротора 

  На основании этих уравнений выполняется построение векторной диаграммы асинхронного двигателя

 

  Построение векторной диаграммы начинается с вектора основного магнитного потока Ф. Затем откладываются вектора E2’ и E1, которые отстают от вектора Ф на 90⁰. Затем зная угол сдвига фаз ψ2 между I2’ и E2’, строят вектор I2’. Вектор I0 опережает Ф на угол δ, а вектор I1 находят как векторную сумму I0 и -I2’. Вектор U1 строим, добавляя к вектору –E1 падение напряжения I1r1 параллельно вектору I1, затем откладываем jI1x1 и получаем вектор I1Z1, который складываем с –E1 и в итоге получаем U1.

  Так как асинхронный двигатель в данном случае можно рассматривать как трансформатор, работающий на активную нагрузку, то вектор –I2’r2’(1-s)/s откладываем под тем же углом, что и I2', затем прибавляем к нему –I2’r2’ и –jI2’x2, получаем вектор –I2’Z2

27.вопрос Электромеханическая (скоростная) и механическая характеристики асинхроннй машины

Механическая характеристика. Зависимость частоты вращения ротора от нагрузки (вращающегося момента на валу) называется механической характеристикой асинхронного двигателя (рис. 262, а). При номинальной нагрузке частота вращения для различных двигателей обычно составляет 98—92,5 % частоты вращения n1 (скольжение sном = 2 – 7,5 %). Чем больше нагрузка, т. е. вращающий момент, который должен развивать двигатель, тем меньше частота вращения ротора. Как показывает кривая

Рис. 262. Механические характеристики асинхронного двигателя: а — естественная; б — при включении пускового реостата

на рис. 262, а, частота вращения асинхронного двигателя лишь незначительно снижается при увеличении нагрузки в диапазоне от нуля до наибольшего ее значения. Поэтому говорят, что такой двигатель обладает жесткой механической характеристикой.

Наибольший вращающий момент Mmax двигатель развивает при некоторое скольжении skp, составляющем 10—20%. Отношение Mmax/Mном определяет перегрузочную способность двигателя, а отношение Мпном — его пусковые свойства.

Двигатель может устойчиво работать только при обеспечении саморегулирования, т. е. автоматическом установлении равновесия между приложенным к валу моментом нагрузки Мвн и моментом М, развиваемым двигателем. Этому условию соответствует верхняя часть характеристики до достижения Mmax (до точки В). Если нагрузочный момент Мвн превысит момент Mmax, то двигатель теряет устойчивость и останавливается, при этом по обмоткам машины будет длительно проходить ток в 5—7 раз больше номинального, и они могут сгореть.

При включении в цепь обмоток ротора пускового реостата получаем семейство механических характеристик (рис. 262,б). Характеристика 1 при работе двигателя без пускового реостата называется естественной. Характеристики 2, 3 и 4, получаемые при подключении к обмотке ротора двигателя реостата с сопротивлениями R1п (кривая 2), R2п (кривая 3) и R3п (кривая 4), называют реостатными механическими характеристиками. При включении пускового реостата механическая характеристика становится более мягкой (более крутопадающей), так как увеличивается активное сопротивление цепи ротора R2 и возрастает sкp. При этом уменьшается пусковой ток. Пусковой момент Мп также зависит от R2. Можно так подобрать сопротивление реостата, чтобы пусковой момент Мп был равен наибольшему Мmax.

В двигателе с повышенным пусковым моментом естественная механическая характеристика приближается по своей форме к характеристике двигателя с включенным пусковым реостатом. Вращающий момент двигателя с двойной беличьей клеткой равен сумме двух моментов, создаваемых рабочей и пусковой клетками. Поэтому характеристику 1 (рис. 263) можно получить путем суммирования характеристик 2 и 3, создаваемых этими клетками. Пусковой момент Мп такого двигателя значительно больше, чем момент М’п обычного короткозамкнутого двигателя. Механическая характеристика двигателя с глубокими пазами такая же, как и у двигателя с двойной беличьей клеткой.

Рабочие характеристики. Рабочими характеристиками асинхронного двигателя называются зависимости частоты вращения n (или скольжения s), момента на валу М2, тока статора I1коэффициента полезного действия ? и cos?1, от полезной мощности Р2 = Рmx при номинальных значениях напряжения U1 и частоты f1 (рис. 264). Они строятся только для зоны практической устойчивой работы двигателя, т. е. от скольжения, равного нулю, до скольжения, превышающего номинальное на 10—20%. Частота вращения n с ростом отдаваемой мощности Р2 изменяется мало, так же как и в механической характеристике; вращающий момент на валу М2 пропорционален мощности Р2, он меньше электромагнитного момента М на значение тормозящего момента Мтр, создаваемого силами трения.

Ток статора I1, возрастает с увеличением отдаваемой мощности, но при Р2 = 0 имеется некоторый ток холостого хода I0. К. п. д. изменяется примерно так же, как и в трансформаторе, сохраняя достаточно большое значение в сравнительно широком диапазоне нагрузки.

Наибольшее значение к. п. д. для асинхронных двигателей средней и большой мощности составляет 0,75—0,95 (машины большой мощности имеют соответственно больший к. п. д.). Коэффициент мощности cos?1 асинхронных двигателей средней и большой мощности при полной нагрузке равен 0,7—0,9. Следовательно, они загружают электрические станции и сети значительными реактивными токами (от 70 до 40% номинального тока), что является существенным недостатком этих двигателей.

Рис. 263. Механическая характеристика асинхронного двигателя с повышенным пусковым моментом (с двойной беличьей клеткой)

Рис. 264. Рабочие характеристики асинхронного двигателя

При нагрузках 25—50 % номинальной, которые часто встречаются при эксплуатации различных механизмов, коэффициент мощности уменьшается до неудовлетворительных с энергетической точки зрения значений (0,5—0,75).

При снятии нагрузки с двигателя коэффициент мощности уменьшается до значений 0,25—0,3, поэтому нельзя допускать работу асинхронных двигателей при холостом ходе и значительных недогрузках.

Электромеханическая

Для АД существуют два типа характеристик: (S) и (S).

Уравнение для второй электромеханической характеристики уже получено ранее в виде (8.13).

Ток ротора является основной величиной для оценки работы двигателя.

Ввиду отсутствия подробных данных о сопротивлениях двигателя, для построения электромеханической характеристики удобно воспользоваться параметрами, используемыми для построения механических характеристик двигателя поформуле Клосса (8.18).

Для анализа формы электромеханической характеристики ее уравнение (без вывода) можно представить в виде [1,2]

 

. (8.20)

Из формулы (8.20) видим, что ток ротора интенсивно растет при увеличении скольжения от нуля до Sк. При S=Sк . При дальнейшем росте скольжения S > Sк ток увеличивается медленно (рис. 8.4).

 

 

Рис. 8.4. Электромеханические характеристики АД

 

Для схемы замещения с вынесенным на зажимы сети контуром намагничивания ток намагничивания Iμ сохраняется неизменным во всех режимах.  С достаточной степенью точности его можно считать чисто реактивным, пренебрегая потерями мощности на перемагничивание стали статора.

Ток определяется как [1,2,4]

, (8.21)

где – коэффициент.

Для выпускающих промышленностью машин значение лежит в пределах 0,4–0,8 и соответствующие им токи = 3–8. Поэтому в среднем 0,13–0,115. Зависимостии показаны на рис. 8.4.

Необходимо обратить внимание, что при одинаковых значениях скольжения ток ротора в двигательном режиме меньше тока в генераторном режиме.

28.вопрос Пуск асинхронных двигателей

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]