Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Tr.docx
Скачиваний:
251
Добавлен:
20.03.2016
Размер:
1.22 Mб
Скачать

16. Переходный процесс при внезапном коротком замыкании трансформатора.

Ограничимся рассмотрением процесса короткого замыкания однофазного трансформатора, работавшего до этого в режиме холостого хода (рис. 50). Примем допущение, что напряжение сети не зависит от режима работы трансформатора, а также будем полагать, что магнитопровод трансформатора во время короткого замыкания не насыщен, поскольку поток взаимоиндукцииФ при коротком замыкании снижается почти вдвое из-за сильного размагничивающего действия токов вторичной обмотки (см. п. 5.2). Это допущение позволяет пренебречь током намагничивания и положить в основу расчета тока внезапного короткого замыкания упрощенную схему замещения (рис. 51). Процессы в этой схеме описываются линейным дифференциальным уравнением

.                                      (31) Решение данного уравнения имеет вид

.                                           (32) Установившаяся составляющая представляет собой частное решение уравнения (31):

, а свободная составляющая определяется из однородного дифференциального уравнения. Для нахождения постоянной интегрированияС зададим начальные условия в момент возникновения короткого замыкания: . Подставляя это условие в (32), получим. Отсюда. С учетом полученных соотношений выражение для тока короткого замыкания можно представить в виде.                  (33) Выражение (33) показывает, что свободная составляющая тока короткого замыкания имеет максимальное значение прии. При этих условиях ударное значение тока короткого замыканияпочти в два раза превышает его установившееся значение.

Изменение тока для случаяпоказано на рис. 5 Ток короткого замыкания достигает максимального значениячерез полпериода после начала аварии,. Токможно выразить через напряжение короткого замыкания трансформатора,

, а коэффициент затухания через его составляющие,. Для силовых трансформаторов;. При этих параметрах максимальный ток короткого замыкания может достигать значений.

17.Элементы обмоток машин переменного токаЭлементом обмотки является виток, состоящий из двух последовательно соединенных проводников, расположенных в пазах на расстоянии, приблизительно равном полюсному делению т. Группа витков, соединенных менаду собой и имеющих общую изоляцию от сердечника, называется катушкой. Одновитковая катушка обычно выполняется из проводников большого сечения, которые называются стержнями. Независимо от количества витков в катушке она имеет только две активные стороны, уложенные в пазы на расстоянии шага у обмотки. На схеме каждая сторона катушки изображается одной линией.

18.Магнитодвижущая сила обмоток машин переменного тока Магнитодвижущая сила (МДС) всех обмоток переменного тока, расположенных на статоре или роторе электрической машины, должна создавать в ее воздушном зазоре вращающееся магнитное поле. Для этого каждая из обмоток, питающаяся от синусоидально изменяющегося напряжения, должна иметь МДС, синусоидально распределенную в пространстве, т. е. по расточке статора или по окружности ротора. Несоблюдение этих условий, т. е. питание от несинусоидального напряжения или несинусоидальное распределение МДС приводит к появлению высших гармонических в кривой распределения магнитного потока, что ведет к ухудшению энергетических показателей машины. Для установления величины и характера распределения МДС обмотки сначала рассмотрим двухполюсную машину с простейшей сосредоточенной обмоткой (рис. 3.8,а), у которой все витки, включенные в фазуАХ, находятся в пазах, расположенных в диаметральной плоскости. При прохождении тока от начала фазыА к ее концуXвозникает двухполюсный магнитный поток, силовые линии которого направлены, как показано на рисунке. Каждая силовая линия этого потока сцеплена со всеми виткамиw катушки данной фазы, поэтому создаваемая катушкой МДСFк=∑i = iw. При максимальном значении тока в катушке эта МДС также имеет максимальное значение:Fкm=Imw= =2Iw. 19.Вращающееся магнитное поле в электрических машинах переменного тока При питании однофазной обмотки переменным током возникает магнитное поле, пульсирующее во времени с частотой изменения тока. В этом случае при синусоидальном распределении МДС (рис. 3.12) в каждой точке воздушного зазора, расположенной на расстояниих от оси обмотки, действует МДС

(3.12)

Fx = F0 cos (πx/τ) = Fm sin ωt cos (πx/τ),

где F0 = Fmsin ωt - МДС в точке, расположенной на оси обмотки.

Выражение (3.14) можно преобразовать к виду

(3.13)

Fx = 0,5Fm sin (ωt - πx/τ) + 0,5Fm sin (ωt + πx/τ).

Каждый из членов правой части (3.13) представляет собой уравнение бегущей (или вращающейся) волны МДС. Следовательно, пульсирующее магнитное поле, синусоидально распределенное в пространстве, можно представить в виде суммы двух магнитных полей, вращающихся в противоположных направлениях (рис. 3.13). При этом бегущие волны МДС, создающие эти магнитные поля,

(3.14)

F'x = 0,5Fm sin (ωt - πx/τ); F''x = 0,5Fm sin (ωt + πx/τ).

20.Конструкция асинхронных машин с короткозамкнутым и с фазным роторомДвигатели с короткозамкнутым ротором(рис. 4.3,аиб). На статоре расположена трехфазная обмотка (см. § 3.6), которая при подключении к сети трехфазного тока создает вращающееся магнитное поле. Обмотка ротора выполнена в виде беличьей клетки, является короткозамкнутой и никаких выводов не имеет (рис. 4.3,в).

Беличья клетка состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами (рис. 4.4, а). Стержни этой обмотки вставляют в пазы сердечника ротора без какой-либо изоляции. В двигателях малой и средней мощности беличью клетку обычно получают путем заливки расплавленного алюминиевого сплава в пазы сердечника ротора (рис. 4.4,6). Вместе со стержнями беличьей клетки отливают короткозамыкающие кольца и торцовые лопасти, осуществляющие вентиляцию машины.

Рис. 4.3.  Устройство  асинхронного  двигателя с короткозамкнутым ротором (а, б) и схема его включения (в):

1 — корпус; 2 — сердечник статора;3 — сердечник ротора;4 — обмотка ротора — беличья  клетка;5 — обмотка статора;6 — вентиляционные  лопатки  ротора; 7 — подшипниковый щит; 8 — кожух вентилятора; 9 — вентилятор

Для этой цели особенно пригоден алюминий, так как он обладает малой плотностью, легкоплавкостью и достаточно высокой электропроводностью. В машинах большой мощности пазы короткозамкнутого ротора выполняют полузакрытыми, в машинах малой мощности - закрытыми. Обе формы паза позволяют хорошо укрепить проводники обмотки ротора, хотя и несколько увеличивают потоки рассеяния и индуктивное сопротивление роторной обмотки. В двигателях большой мощности беличью клетку выполняют из медных стержней, концы которых вваривают в короткозамыкающие кольца (рис. 4.4, в). Различные формы пазов ротора показаны на рис. 4.4, г.

В электрическом отношении беличья клетка представляет собой многофазную обмотку, соединенную по схеме Υ и замкнутую накоротко. Число фаз обмотки m2 равно числу пазов ротораz2, причем в каждую «фазу» входят один стержень и прилегающие к нему участки короткозамыкающих колец.

Часто асинхронные двигатели с фазным и короткозамкнутым ротором имеют скошенные пазы на статоре или роторе. Скос пазов делают для того, чтобы уменьшить высшие гармонические ЭДС, вызванные пульсациями магнитного потока из-за наличия зубцов, снизить шум, вызываемый магнитными причинами, и устранить явление прилипания ротора к статору, которое иногда наблюдается в микродвигателях.

Двигатели с фазным ротором (рис. 4.5,а). Обмотка статора выполнена так же, как и в двигателях с короткозамкнутым ротором. Ротор имеет трехфазную обмотку с тем же числом полюсов. Обмотку ротора обычно соединяют по схеме Υ, три конца которой выводят к трем контактным кольцам (рис. 4.5,6), вращающимся вместе с валом машины. С помощью металлографитных щеток, скользящих по контактным кольцам, в ротор включают пусковой или пускорегулирующий реостат, т. е. в каждую фазу ротора вводят добавочное активное сопротивление.

Рис. 4.5. Устройство асинхронного двигателя с фазным ротором и схема

его включения: 1- обмотка статора;2 - сердечник статора;3 - корпус;4 - сердечник ротора;5- обмотка ротора;б- вал;7- кольца;8 - пусковой реостат

Чтобы уменьшить износ колец и щеток, двигатели с фазным ротором иногда имеют приспособления для подъема щеток и замыкания колец накоротко после выключения реостата. Однако введение этих приспособлений усложняет конструкцию электродвигателя и несколько снижает надежность его работы, поэтому обычно применяют конструкции, в которых щетки постоянно соприкасаются с контактными кольцами. Основные конструктивные элементы двигателя с фазным ротором приведены на рис. 4.6.

21.Частота ЭДС и токов в обмотке статора и ротора асинхронной машины. Скольжение. Из выражения (10.11) следует, что частота тока статора пропорциональна частоте вращения магнитного поля, созданного током статора:

(10.20)

f1 =n0p/60.

Так как ротор вращается в сторону поля (рис. 10.14), частота пересечения его обмотки магнитным полем будет определяться разностью частот вращения магнитного поля и ротора. По аналогии с (10.20) частота тока ротора

(10.21)

f2 = (n0 -n)р/60.

Из отношения (10.20) к (10.21)

f1/f2 = n/(n0 -n)

получаем выражение частоты тока ротора

(10.22)

f2 = f1 (n0 - n)/n0 = f1s,

где s — скольжение:

(10.23)

s = (n0 - n)/n0.

Скольжение — величина безразмерная, представляющая собой частоту вращения ротора относительно поля статора, выраженную в долях частоты вращения поля статора. Когда ротор неподвижен (n= 0),

Рис.   10.14.   К  пояснению  скольжения и частоты тока ротора

s= (n0 - 0)/n0 = 1;f2 =f1s =f1 • 1 =f1.

Если ротор вращается с частотой поля, то

s= (n0 -n0)/n0 = 0;f2 =f1s=f2 • 0 = 0.

При неподвижном роторе его обмотка относительно поля находится в тех же условиях, что и обмотка статора. Поэтому ЭДС обмотки ротора может быть определена по аналогичной формуле, что и ЭДС обмотки статора:

(10.24)

E2к = 4,44f1wk02,

где w2 — число витков фазы обмотки ротораk02 — обмоточный коэффициент обмотки ротора. Когда ротор вращается,

(10.25)

Е2 = 4,44f2wk02.

Из отношения (10.24) и (10.25) вытекает, что

(10.26)

E2 =E2к =f2/f1.

Подставив в (10.26) вместо f2 его значение из (10.22), получим

(10.27)

E2 =E2k =f1s/f1 =E2ks.

Таким образом, ЭДС обмотки ротора пропорциональна скольжению.

При n = 0s= 1,E2 =E2к; приn = n0s = 0,E2 = 0.

23.

уравнение напряжение статора и ротора АМ

Обмотка ротора асинхронного двигателя не имеет электрической связи с обмоткой статора. Между ними существует только магнитная связь и энергия из обмотки статора передается в обмотку ротора магнитным полем. В этом отношении асинхронная машина аналогична двухобмоточному трансформатору: обмотка статора является первичной, а обмотка ротора - вторичной.

Так же как и в трансформаторе, в асинхронной машине имеется результирующий магнитный поток Ф, сцепленный как с обмоткой статора, так и с обмоткой ротора, и два потока рассеяния: - поток рассеяния обмотки статора и - поток рассеяния обмотки ротора.

  Амплитуда результирующего магнитного потока , вращающегося с частотой n1, наводит в фазах неподвижной обмотки статора ЭДС, действующее значение которой равно

.

Магнитный поток рассеяния  наводит в фазах обмотки статора ЭДС рассеяния, значение которой определяется падением напряжения на индуктивном сопротивлении рассеяния фазы обмотки статора

,

где - индуктивное сопротивление рассеяния фазы обмотки статора.

Уравнение напряжения фазы обмотки статора, включенной в сеть с напряжением , запишется:

,

где - падение напряжения на активном сопротивлении фазы обмотки статора .

Окончательная запись уравнения не отличается от уравнения напряжения для первичной обмотки трансформатора

.

Результирующий магнитный поток Ф, обгоняя вращающийся ротор, индуктирует в фазе обмотки ротора ЭДС

где - частота ЭДС  в фазе обмотки вращающегося ротора;  - ЭДС, наведенная в фазе обмотки неподвижного ротора.

Магнитный поток рассеяния  наводит в фазах обмотки ротора ЭДС рассеяния, значение которой определяется падением напряжения на индуктивном сопротивлении фазы этой обмотки:

,

где   - индуктивное сопротивление рассеяния фазы обмотки ротора при неподвижном роторе.

Уравнение напряжения для фазы обмотки ротора

,

где - активное сопротивление фазы обмотки ротора.

Окончательная запись уравнения:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]