Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Биохимия_Ответы

.pdf
Скачиваний:
9
Добавлен:
17.03.2016
Размер:
1.11 Mб
Скачать

Затем с помощью этих белков глюкоза транспортируется в клетку по градиенту концентрации. Скорость поступления глюкозы в мозг и печень не зависит от инсулина и определяется только концентрацией ее в крови. Эти ткани называются инсулинонезависимыми.

Катаболизм глюкозы Гликолиз - это серия реакций, в результате которых глюкоза распадается на две молекулы

пирувата (аэробный гликолиз) или две молекулы лактата (анаэробный гликолиз). Все десять реакций гликолиза протекают в цитозоле и характерны для всех органов и тканей. Аэробный распад глюкозы включает реакции аэробного гликолиза и последующее окисление пирувата в реакциях катаболизма.

Таким образом, аэробный распад глюкозыэто предельное ее окисление до СО2 и Н2О, а анаэробный гликолиз - это специфический путь катаболизма, т. е. часть аэробного распада глюкозы. Анаэробный распад включает те же реакции специфического пути распада глюкозы до пирувата, но с последующим превращением пирувата в лактат (т. е. термины анаэробный распад и анаэробный гликолиз совпадают).

Вгликолизе можно выделить три основных этапа. На первом этапе превращениям подвергаются гексозы, на втором - триозы, на третьем - карбоновые кислоты.

Характеристика гликолиза:

большинство реакций обратимо, за исключением трех;

все метаболиты находятся в фосфорилированной форме;

источником фосфатной группы в реакциях фосфорилирования являются АТФ или неорганический фосфат;

регенерация NAD+, являющаяся необходимым условием протекания гликолиза, происходит при аэробном гликолизе посредством дыхательной цепи. В этом случае водород транспортируется в митохондрии с помощью челночного механизма при участии переносчиков. Это происходит потому, что мембрана митоходрий непроницаема для протонов. При анаэробном гликолизе регенерации NAD+ осуществляется независимо от дыхательной цепи. В этом случае акцептором водорода от NADH является пируват, который восстанавливается в лактат;

образование АТФ при гликолизе может идти двумя путями: либо субстратным фосфорилированием, когда для фосфорилирования AДФ используется энергия макроэргической связи субстрата, либо путем окислительного фосфорилирования AДФ, сопряженного с дыхательной цепью.

Аэробный распад глюкозы. Энергетическое значение аэробного распада глюкозы.

Ваэробном гликолизе образуется 10 моль АТФР на 1 моль глюкозы. Так, в реакциях 7, 10 образуется 4 моль АТФ путем субстратного фосфорилирования, а в реакции 6 синтезируется 6 моль АТФ (на 2 моль глицероальдегидфосфата) путем окислительного фосфорилирования.

Баланс аэробного гликолиза.

Суммарный эффект аэробного гликолиза составляет 8 моль АТФ, так как в реакциях 1 и 3 используется 2 моль АТФ. Дальнейшее окисление двух моль пируват в общих путях катаболизма сопровождается синтезом 30 моль АТФ (по 15 моль на каждую молекулу пирувата. Следовательно, суммарный энергетический эффект аэробного распада глюкозы до конечных продуктов составляет 38 моль АТФ.

15. Обмін речовин та енергії. Поняття про загальні та специфічні шляхи метаболізму. Загальний шлях катаболізму. Цитратний цикл, механізми його регуляції.

Метаболизм или обмен веществ - совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. В обмене веществ можно выделить два основных этапа: подготовительный - когда поступившее алиментарным путем вещество подвергается химическим превращениям, в результате которых оно может поступить в кровь и далее проникнуть в клетки, и собственно метаболизм, т.е. химические превращения соединений, проникнувших внутрь клеток.

Метаболический путь - это характер и последовательность химических превращений конкретного вещества в организме. Промежуточные продукты, образовавшиеся в процессе метаболизма называются метаболитами, а последнее соединение метаболического пути - конечный продукт.

Процесс распада сложных веществ на более простые называется катаболизмом. Так, поступающие в пищей белки, жиры, углеводы под действием ферментов пищеварительного тракта распадаются на более простые составные части (аминокислоты, жирные кислоты и моносахариды). При этом высвобождается энергия.

Метаболический цикл - это метаболический путь, один из конечных продуктов которого идентичен одному из соединений, вовлеченных в этот процесс.

Частный путь метаболизма - совокупность превращений одного определенного соединения (углеводы или белки). Общий путь метаболизма - когда вовлекаются два и более видов соединений (углеводы, липиды и частично белки вовлечены в энергетический метаболизм). Субстраты метаболизма - соединения поступающие с пищей. Среди них выделяют основные пищевые вещества (белки, углеводы, липиды) и минорные, которые поступают в малых количествах (витамины, минеральные вещества).

Интенсивность метаболизма определяется потребностью клетки в тех или иных веществах или энергии, регуляция осуществляется четырьмя путями:

1) Суммарная скорость реакций определенного метаболического пути определяется концентрацией каждого из ферментов этого пути, значением рН среды,внутриклеточной концентрацией каждого из промежуточных продуктов, концентрацией кофакторов и коферментов. 2) Активностью регуляторных (аллостерических) ферментов, которые обачно катализируют начальные этапы метаболических путей. Большинство из них ингибируется конечным продуктом данного пути и этот вид ингибирования называется "по принципу обратной связи".

3)

Генетический контроль, определяющий скорость синтеза того или

иного фермента.

Яркий

пример - появление в клетке индуцибельных ферментов

в

ответ

на

поступление

соответствующего субстрата.

 

 

 

 

 

 

4)

Гормональная регуляция. Ряд гормонов способны активировать или

ингибировать

многие

ферменты метаболических путей.

 

 

 

 

 

 

 

Живые организмы представляют собой термодинамически неустойчивые системы.

Для их

формирования и функционирования необходимо непрерывное поступление энергии в форме, пригодной для многопланового использования. Для получения энергии практически все живые существа на планете приспособились подвергать гидролизу одну из пирофосфатных связей АТФ. В связи с этим одна из главных задач биоэнергетики живых организмов это восполнение использованных АТФ из АДФ и АМФ.

Основной источник энергии в клетке - окисление субстратов кислородом воздуха. Этот процесс осуществляется тремя путями: присоединением кислорода к атому углерода, отщеплением водорода или потерей электрона. В клетках окисление протекает в форме последовательного переноса водорода и электронов от субстрата к кислороду. Кислород играет в этом случае роль восстанавливающегося соединения (окислителя). Окислительные реакции протекают с высвобождением энергии. Для биологических реакций характерны сравнительно небольшие изменения энергии. Это достигается за счет дробления процесса окисления на ряд промежуточных стадий, что позволяет запасать ее небольшими порциями в виде макроэргических соединений (АТФ). Восстановление атома кислорода при взаимодействии с парой протонов и электронов приводит к образованию молекулы воды.

Если процесс катаболизма рассматривать с общей точки зрения, то можно выделить три основные его части:

1.Расщепление в пищеварительном тракте. Это гидролитические реакции, превращающие сложные пищевые вещества в относительно небольшое число простых метаболитов: глюкоза, аминокислоты, глицерин, жирные кислоты.

2.Специфические пути катаболизма. Простые метаболиты подвергаются специфическим реакциям расщепления, в результате которых образуется либо пировиноградная кислота, либо ацетил - СоА. Причем ацетил - СоА может образоваться из пирувата в результате окислительного декарбоксилирования. Могут также образоваться другие соединения, непосредственно включающиеся в цитратный цикл.

3.Цитратный цикл и дыхательная цепь завершают расщепление пищевых веществ до конечных продуктов - СО2 и Н2О.

Следовательно, начиная со стадии образования пирувата происходит унификация путей катаболизма. Из большого числа исходных соединений образуется всего два - пируват и ацетил - СоА. Процесс, начинающийся от пирувата, называется общим путем катаболизма и в свою очередь включает:

окислительное декарбоксилирование пирувата

цитратный цикл.

Именно в общем пути катаболизма образуется основная масса субстратов для реакций дегидрирования. Совместно с дыхательной цепью и окислительным фосфорилированием общий путь катаболизма является основным источником энергии в форме АТР.

Окислительное декарбоксилирование пировиноградной кислоты

Суммарный результат многостадийной реакции выглядит следующим образом:

Реакция катализируется тремя ферментами, работающими в определенной последовательности и объединенными в пируватдегидрогеназный комплекс. Этот комплекс ферментов работает подобно конвейеру, в котором продукт передается от фермента к ферменту. Такой принцип повышает эффективность работы ферментов, так как снижает случайность в контакте реагирующих веществ с ферментом.

Цитратный цикл

Цитратный цикл (цикл Кребса, цикл трикарбоновых кислот) - это система реакций, приводящая к полному окислению двухуглеродного ацетильного фрагмента, имеющего различное происхождение. Цитратный цикл является общим конечным путем окисления белков, жиров и углеводов. Все реакции цитратного цикла, как и окислительного декарбоксилирования пирувата, локализованы в митохондриях. В ходе одного полного цикла происходит:

полное окисление ацетильного остатка до двух молекул СО2;

образование трех молекул восстановленного NAD+ и одной молекулы FADH2;

образование одной молекулы GTP в результате субстратного фосфорилирования.

Энергетика цитратного цикла и общих путей катаболизма

За один оборот цитратного цикла синтезируется 12 молекул АТР. Девять из них образуются за счет энергии транспорта в дыхательной цепи трех пар водорода от трех молекул NADH + H+. Две

молекулы АТР синтезируются при окислении 1 молекулы FADH2, так как в дыхательной цепи в данном случае действуют только два пункта сопряжения с окислительным фосфорилированием ADP. Кроме того, в цитратном цикле происходит одна реакция субстратного фосфорилирования, дающая 1 моль GTP (АТР). В общих путях катаболизма синтезируется 15 молекул АТР. Три из них при окислительном декарбоксилировании пирувата и 12 - в цитратном цикле.

Регуляция общих путей катаболизма

Главным фактором, регулирующим скорость дыхания и фосфорилирования, являются энергетические потребности организма. Основная масса восстановленных эквивалентов для дыхательной цепи поступает из общих путей катаболизма. Следовательно, регуляция общих путей катаболизма и дыхательной цепи тесно связана. Все контролирующие механизмы осуществляются на уровне ферментов и многие из них с помощью аллостерических эффекторов. Для оценки энергетического состояния клетки используют величину энергетического заряда, отражающего соотношение концентрации ATP к продуктам ее распада - ADP и AMP. При увеличении энергетического заряда в клетке (в состоянии покоя) скорость реакций общих путей катаболизма снижается, а при уменьшении энергетического заряда - увеличивается. Это достигается тем, что ATP действует как аллостерический ингибитор, а ADP и AMP - как аллостерические

активаторы некоторых ферментов.

Другой механизм регуляции связан с необходимостью регенерации NAD+ в дыхательной цепи. При уменьшении расхода АТР в клетке скорость дыхания митохондрий снижается (дыхательный контроль), уменьшается также скорость окисления NADH в дыхательной цепи и увеличивается концентрация NADH. В этом случае NADH ингибирует некоторые ферменты общих путей катаболизма, что приводит к замедлению реакций катаболизма и, следовательно, замедлению наработки восстановленных коферментов и уменьшению синтеза АТР. При увеличении энергетических потребностей организма происходит все наоборот. Ряд промежуточных продуктов цитратного цикла служат предшественниками для синтеза необходимых организму веществ. Так сукцинил-СоА используется для синтеза гема, оксалоац -кетоглутарат - для синтеза аспарагиновой и глутаминовой кислот. Очевидно, что выведение хотя бы одного метаболита нарушает работу цикла, так как уменьшает регенерацию оксалоацетата. Для компенсации концентрации метаболитов цикла в митохондриях происходит реакция карбоксилирования пирувата с образованием оксалоацетата. Таким образом, пируват включается в цитратный цикл двумя путями: окислительное декарбоксилирование с образованием ацетил-СоА, карбоксилирование с образованием оксалоацетата. Последнюю реакцию катализирует пируваткарбоксилаза, коферментом является биотин:

Гипоэнергетические состояния

Наиболее частой причиной гипоэнергетических состояний является гипоксия, возникновение которой в свою очередь связано с нарушением:

поступления кислорода в кровь, что наблюдается при недостаточности О2 во вдыхаемом воздухе или нарушении легочной вентиляции;

транспорта кислорода в ткани при нарушении кровообращения или снижении транспортной функции гемоглобина;

функций митоходрий, вызванное действием ядов, разобщителей.

Кроме того, причиной гипоэнергетических состояний могут быть гиповитаминозы, так как в реакциях общих путей катаболизма и дыхательной цепи участвуют коферменты, содержащие витамины. Так, витамин В1 входит в состав тиаминдифосфата, В2 является составной частью FMN и FAD, витамин РР в виде никотинамида входит в состав NAD+ и NADP+, пантотеновая кислота - в состав кофермента А, биотин также выполняет коферментную функцию активации СО2.

16. Ферменти та їхні властивості як біологічних каталізаторів, біологічна роль.

Ферменты (лат. fermentum брожение, бродильное начало; синоним энзимы) специфические вещества белковой природы, присутствующие в тканях и клетках всех живых организмов и способные во много раз ускорять протекающие в них химические реакции. Вещества, в небольших количествах ускоряющие химические реакции в результате взаимодействия с реагирующими соединениями (субстратами), но не входящие в состав образовавшихся продуктов и остающиеся неизмененными по окончании реакции, называют катализаторами. Ферменты представляют собой биокатализаторы белковой природы. Катализируя подавляющее большинство биохимических реакций в организме, Ф. регулируют Обмен веществ и энергии, играя тем самым важную роль во всех процессах жизнедеятельности. Все функциональные проявления живых организмов (дыхание, мышечное сокращение, передача нервного импульса, размножение и т.д.) обеспечиваются действием ферментных систем. Совокупностью катализируемых Ф. реакций являются синтез, распад и другие превращения белков, жиров, углеводов, нуклеиновых кислот, гормонов и других соединений.

Как правило, Ф. присутствуют в биологических объектах в ничтожно малых концентрациях, поэтому больший интерес представляет не количественное содержание Ф., а их активность по скорости ферментативной реакции (по убыли субстрата или накоплению продуктов). Принятая международная единица, активности ферментов (ME) соответствует такому количеству фермента, которое катализирует превращение 1 мкмоля субстрата за 1 мин в оптимальных для данного Ф. условиях. В Международной системе единиц (СИ) единицей активности Ф. является катал (кат) — количество Ф., необходимое для каталитического превращения 1 моля субстрата за 1 с.

Все ферменты имеют белковую природу. Они представляют собой либо простые белки, целиком построенные из полипептидных цепей и распадающиеся при гидролизе только на аминокислоты (например, гидролитические ферменты трипсин и пепсин, уреаза), либо — в большинстве случаев — сложные белки, содержащие наряду с белковой частью (апоферментом) небелковый компонент (кофермент или простетическую группу).

В процессе развития от оплодотворенного яйца до взрослого организма различные ферментные системы синтезируются неодновременно, поэтому с возрастом ферментный состав тканей изменяется. Возрастные изменения метаболической активности особенно выражены в период эмбрионального развития по мере дифференцировки различных тканей с их характерным набором ферментов. На самых ранних стадиях развития эмбриона (непосредственно после оплодотворения яйцеклетки) преобладают те типы Ф. которые транслируются с материнского генетического материала. В печени выявлены 3 основные группы Ф., появляющиеся в позднем внутриутробном периоде, в периоде новорожденности и в конце периода грудного вскармливания. Содержание некоторых Ф. изменяется в онтогенезе более сложным — фазным образом. Недостаточная активность определенных Ф. у новорожденных может приводить к развитию патологических состояний. Современные представления о механизме действия Ф. базируются на предположении, согласно которому в реакциях, катализируемых Ф. образуется фермент-субстратный комплекс, распадающийся с образованием продуктов реакции и свободного фермента. Превращения ферментсубстратного комплекса — сложный процесс, включающий стадии присоединения молекулы субстрата к ферменту, перехода этого первичного комплекса в ряд активированных комплексов, отделение продуктов реакции от ферментов. Специфичность действия Ф. объясняют наличием в их молекуле специфического участка — активного центра. Активный центр содержит каталитический участок, принимающий непосредственное участие в катализе, а также контактный участок (площадку), или участок (участки) связывания, где осуществляется связывание фермента с субстратом.

По субстратной специфичности — способности избирательно ускорять определенную реакцию — различают Ф., обладающие абсолютной специфичностью (т.е. действующие только на одно конкретное вещество и катализирующие только определенное превращение этого вещества), и Ф., обладающие относительной или групповой специфичностью (т.е. катализирующие превращения молекул, обладающих определенным сходством). К первой группе относятся, в частности, Ф., использующие в качестве субстрата определенные стереоизомеры (например, сахара и аминокислоты L или D ряда). Примерами Ф., характеризующихся абсолютной специфичностью, являются уреаза, катализирующая гидролиз мочевины до NH3 и СО2, Лактатдегидрогеназа, оксидазы D и L аминокислот. Относительная специфичность характерна для многих ферментов, в т.ч. для ферментов класса гидролаз: протеаз, эстераз, фосфатаз.

От неорганических катализаторов Ф. отличаются не только химической природой и субстратной специфичностью, но и способностью ускорять реакции в физиологических условиях, характерных для жизнедеятельности живых клеток, тканей и органов. Скорость катализируемых Ф. реакций зависит от ряда факторов, в первую очередь — от природы фермента, обладающего низкой или высокой активностью, а также от концентрации субстрата, наличия в среде активаторов или ингибиторов, температуры и реакции среды (рН). В определенных пределах скорость реакции прямо пропорциональна концентрации субстрата, а начиная с определенной (насыщающей) его концентрации скорость реакции не меняется с возрастанием концентрации субстрата. Одной из важных характеристик Ф. является константа Михаэлиса (Км) — мера сродства между Ф. и субстратом, соответствующая концентрации субстрата в моль/л, при которой скорость реакции составляет половину максимальной, а в комплексе с субстратом находится половина молекул Ф. Другой характеристикой ферментативной реакции является величина «число оборотов фермента», показывающая, сколько молекул субстрата подвергается превращению за единицу времени в расчете на одну молекулу Ф.

Подобно обычным химическим реакциям, ферментативные реакции ускоряются при повышении температуры. Оптимальная температура для активности ферментов составляет обычно 40—50°. При более низкой температуре скорость ферментативной реакции, как правило, снижается, а при 0° функционирование Ф. прекращается. При превышении оптимальной температуры скорость реакции снижается, а затем реакция полностью прекращается вследствие постепенной денатурации белков и инактивацип Ф. Известны, однако, единичные Ф., устойчивую к тепловой денатурации. Отдельные Ф. различаются по оптимальному для их действия значению рН. Многие Ф. наиболее активны при величине рН, близкой к нейтральной (рН около 7.0), но ряд Ф. имеет оптимум рН вне этой области. Так, пепсин наиболее активен в сильнокислой среде (рН 1,0—2,0), а трипсин — в слабощелочной

(рН 8,0—9,0).

Существенное влияние на активность Ф. оказывает наличие в среде определенных химических веществ: активаторов, повышающих активность Ф., и ингибиторов, подавляющих ее. Часто одно и то же вещество служит активатором одних Ф. и ингибитором других. Ингибирование Ф. может быть обратимым и необратимым. В качестве ингибиторов или активаторов часто могут выступать ионы металлов. Иногда ион металла является постоянным, прочно связанным компонентом активного центра Ф., т.е. Ф. относится к металлосодержащим сложным белкам, или металлопротеидам. Активация некоторых Ф. может происходить с использованием другого механизма, предусматривающего протеолитическое расщепление неактивных предшественников Ф. (проферментов или зимогенов) с образованием активных Ф. (например, трипсина).

Большинство Ф. функционирует в тех клетках, в которых происходит их биосинтез. Исключение составляют пищеварительные ферменты, секретируемые в пищеварительный тракт, Ф. плазмы крови, участвующие в процессе свертывания крови, и некоторые другие.

Многие Ф. характеризуются наличием изоферментов — молекулярных разновидностей ферментов. Катализируя одну и ту же реакцию, изоферменты определенного Ф. могут различаться по ряду физико-химических свойств (по первичной структуре, субъединичному составу, оптимуму рН, термостабильности, чувствительности к активаторам и ингибиторам, сродству к субстратам и т.д.). Множественные формы Ф. включают генетически детерминированные изоферменты (например, лактатдегидрогеназа) и негенетические изоферменты, образующиеся в результате химической модификации исходного фермента или его частичного протеолиза (например, изоферменты пируваткиназы). Различные изоформы одного Ф. могут быть специфичны для разных органов и тканей или субклеточных фракций. Как правило, многие Ф. присутствуют в тканях в разных концентрациях и часто в разных изоформах, хотя известны и Ф., специфичные для определенных органов.

Регуляция активности ферментативных реакций многообразна. Она может осуществляться за счет изменения факторов, влияющих на активность Ф., в т.ч. рН, температуры, концентрации субстратов, активаторов и ингибиторов. Так называемые аллостерические Ф. способны в результате присоединения к их некаталитическим участкам метаболитов — активаторов и ингибиторов — изменять стерическую конфигурацию белковой молекулы (конформацию). За счет этого изменяется взаимодействие активного центра с субстратом и, следовательно, активность Ф. Возможна регуляция активности Ф. за счет изменения количества его молекул в результате модуляции скорости его биосинтеза или деградации, а также за счет функционирования различных изоферментов.

17.Окислювальне перетворення глюкозо-6-фосфату (пентозофосфатний шлях і його значення).

Пентозофосфатный путь является альтернативным путем окисления глюкозы. Он включает несколько циклов, в результате функционирования которых из трех молекул глюкозо-6-фосфата образуются три молекулы CO2 и три молекулы пентоз . Последние используются для регенерации двух молекул глюкозо-6-фосфата и одной молекулы глицеральдегид-3-фосфат а. Поскольку из двух молекул глицеральдегид-3-фосфата можно регенерировать молекулу глюкозо-6-фосфата, глюкоза может быть полностью окислена при превращении по пентозофосфатному пути:

3 Глюкозо-6-фосфат + 6 NADP+ -> 3 CO2 + 2 Глюкозо-6-фосфат + Глицеральдегид-3-фосфат + 6

NADPH + 6 H+.

3*G6P + 6*NADP(+) + 3*CO(2) + 2*G6P + GAP + 6*NADPH + 6*H(+)

Пентозофосфатный цикл не приводит к синтезу ATP . Он выполняет две главные функции:

1)образование NADPH для восстановительных синтезов, таких, как синтез жирных кислот и синтез стероидов ;

2)обеспечение рибозой синтеза нуклеотидов и синтеза нуклеиновых кислот . Недостаточность ряда ферментов пентозофосфатного пути является причиной гемолиза эритроцитов. Например, одна из форм гемолитической анемии обусловлена недостаточностью глюкозо-6- фосфатдегидрогеназы . На земле живет около 100 миллионов людей с генетически обусловленным пониженным уровнем глюкозо-6-фосфатдегидрогеназы; этот фермент представлен изоформами с различной активностью. Эти формы могут быть выявлены с помощью электрофореза или других методов.

Первая реакция заключается в фосфорилировании глюкозы с помощью АТФ и превращении

еев метаболически активную форму глюкозо-6-фосфата, аналогично тому, что имеет место на первом этапе гликолиза . Следующий этап заключается в дегидрировании глюкозо-6- фосфата, катализируемом глюкозо-6-фосфат-дегидрогеназой. Особенность реакции в том, что в ней участвует НАДФ+ в качестве акцептора водорода. Образовавшийся продукт реакции очень нестоек и спонтанно или с помощью фермента лактоназы гидролизуется с образованием 6-фосфоглюконовой кислоты , которая подвергается окислительному декарбоксилированию , катализируемому фосфоглюконатдегидрогеназой. Эта реакция приводит к образованию соответствующего пентозофосфата, НАДФ*Н2 и выделению СО2. Рибулозо-5- фосфат обратимо превращается в ксилулозо-5-фосфат и рибозо-5-фосфат с участием ферментов фосфопентозоэпимеразы и фосфопентозоизомеразы соответственно.

Суммарно весь процесс можно представить в виде следующего уравнения:

глюкозо-6-фосфат + 2НАДФ+ переходит обратимо в рибозо-5-фосфат + СО2 + 2НАДФ*Н2.

Как видно, на этом этапе образуются 2 молекулы НАДФ*Н2, которые могут потребляться в восстановительных биосинтетических процессах, и молекула рибозо-5-фосфата, используемого в синтезе нуклеиновых кислот и пентозосодержащих коферментов. (Некоторые авторы считают, что особенность окислительного пентозофосфатного пути - перенос электронов на окислительных этапах на НАДФ+, а не на НАД+ - в последующем оказалась очень "выгодной" для аэробов , так как позволила иметь два отдельных пула восстановленных пиридиновых переносчиков, с одного из которых ( НАД*Н2 ) электроны поступали в дыхательную цепь, а с другого ( НАДФ*Н2 ) использовались в биосинтетических восстановительных реакциях.

Примечательно, что ни на одном из окислительных этапов не синтезируется АТФ . Первоначально окислительный пентозофосфатный путь возник, вероятно, для обеспечения эубактерий пентозами. В этом случае возникновение только трех новых ферментов (глюкозо-6- фосфатдегидрогеназы, лактоназы и фосфоглюконатдегидрогеназы) уже приводило к синтезу пентоз. Поскольку к этому времени функционировали изомеразные ферменты гликолитического пути , формирование фосфопентозоизомеразы произошло довольно легко. Действительно, при определенных условиях окислительный пентозофосфатный путь на этом завершается.

Дальнейшее его развитие, вероятно, связано с энергетическими потребностями клетки. Меньшей части образующегося рибозо-5-фосфата оказалось достаточно для удовлетворения всех

потребностей клетки в пентозах. Остальная часть синтезируемого пентозофосфата была субстратом, хранившим в себе большие запасы энергии. Способность использовать в энергетических целях этот субстрат связана с возникновением двух ферментов: фосфопентозоэпимеразы, катализирующей превращение рибулозо-5- фосфата в ксилулозо-5-фосфат, и пентозофосфокетолазы, катализирующей расщепление ксилулозо-5-фосфата на 3-ФГА и ацетилфосфат .

Использование в качестве источника энергии в анаэробных условиях пентозных субстратов, образуемых в окислительном пентозофосфатном пути, свойственно группе гетероферментативных молочнокислых бактерий , для которых характерно образование в качестве конечных продуктов брожения ряда органических соединений: молочной и уксусной кислот, этилового спирта, глицерина, СО2 и др. Этим гетероферментативные молочнокислые бактерии отличаются от гомоферментативных молочнокислых бактерий , почти полностью сбраживающих гексозы по гликолитическому пути в молочную кислоту. Изучение механизмов образования конечных продуктов брожения гетероферментативными молочнокислыми бактериями обнаружило, что они связаны с дальнейшими различными путями метаболизирования С2- и С3фрагментов фосфокетолазной реакции. 3-ФГА претерпевает ряд ферментативных превращений, идентичных таковым гликолитического пути , и через пируват превращается в молочную кислоту. Судьба двухуглеродного фрагмента различна: двухступенчатое восстановление ацетилфосфата приводит к накоплению в среде этанола ; окислительный путь превращения ацетилфосфата завершается образованием уксусной кислоты .

Преобладание в ферментационной среде того или иного продукта зависит от вида культуры, условий культивирования и фазы развития. Гетероферментативные молочнокислые бактерии Leuconostoc mesenteroides сбраживают глюкозу в молочную кислоту, этанол и СО2 по следующему уравнению:

С6Н12О6 переходит в СН3-СНОН-СООН + СН3-СН2ОН + СО2.

У других гетероферментативных молочнокислых бактерий больший удельный вес занимают процессы, ведущие к накоплению уксусной кислоты . Образование уксусной кислоты из ацетилфосфата сопряжено с синтезом АТФ . Если брожение идет с образованием этанола, то выход энергии равен 1 молекуле АТФ на молекулу сброженной глюкозы; если образуется уксусная кислота, то общий энергетический баланс процесса составляет 2 молекулы АТФ на молекулу глюкозы, т.е. такой же, как при гликолизе .

Окислительный пентозофосфатный путь функционирует в качестве единственного пути сбраживания углеводов у облигатных гетероферментативных молочнокислых бактерий. Эти бактерии лишены ключевых ферментов гликолитического пути, например альдолазы и триозофосфатизомеразы.

Большинство молочнокислых бактерий имеют два пути сбраживания углеводов: гликолитический и окислительный пентозофосфатный. Сбраживание гексоз, как правило, протекает по гликолитическому пути, а пентоз - по окислительному пентозофосфатному. Это имеет место, например, у Lactobacillus plantarum . Ферменты окислительного пентозофосфатного пути обнаружены у клостридиев .

Таким образом, возникнув сначала как механизм синтеза клеткой С5соединений, т.е. для выполнения узкой специфической задачи, этот путь получил дальнейшее развитие и стал выполнять дополнительную функцию снабжения эубактерий энергией в анаэробных условиях. Субстратная база для окислительного пентозофосфатного пути позднее была расширена, так как он стал использоваться и для сбраживания пентоз биогенного происхождения, накапливавшихся в окружающей среде.

18.Біологічна цінність харчових ліпідів. Переварювання, всмоктування та ресинтез ліпідів у органах травного тракту.

Липиды – это гетерогенная группа органических соединений тканей животных и растений непосредственно или опосредованно связанных с высшими жирными кислотами. Их общими свойствами являются относительная нерастворимость в воде и растворимость в полярных

растворителях.

 

По биологическим функциям липиды подразделяют на три основные группы:

 

1)

структурные или рецепторные компоненты мембран. Неполярные липиды служат

 

электроизоляторами, обеспечивая быстрое распространение волн деполяризации

вдоль

миелиновых волокон (фосфолипиды, холестериды, сфинголипиды);

 

2)

эффективный источник энергии - либо непосредственно используются, либо

 

потенциально в форме «депо» энергии в организме (триацилглицеролы – ТАГ);

 

3)

передатчики биологических сигналов (жирорастворимые витамины и стероидные

гормоны).

 

По состоянию липидов в организме их можно разделить на две группы:

 

1)резервные жиры, выполняющие роль метаболического топлива – это ТАГ жировой ткани (подкожной клетчатки, сальника, брыжейки).

2)протоплазматические липиды – содержатся в комплексе с углеводами и белками в мембранах клеток (фосфо- и гликолипиды).

Жир – ценный компонент пищи человека. В составе пищевых продуктов различают видимые жиры (растительное и сливочное масло, маргарин) и невидимые (жир мяса и мясопродуктов, рыбы, молока и молочных продуктов и др). Наиболее важные источники жиров в питании: растительные масла, сливочное масло, маргарин, молочные продукты, продукты из свинины, колбасные изделия, майонез, шоколад. В гречневой крупе содержится 3,3% жира, овсяной - 6,2%, пшене - 3,3%.

По происхождению различают растительные и животные жиры. Функции жиров в организме:

1.Жиры обеспечивают всасывание из кишечника ряда минеральных веществ и жирорастворимых витаминов.

2.Хранение в жировой ткани антиоксидантов, включая жирорастворимый витамин Е, и фитовеществ, полученных из фруктов и овощей.

3.Жиры участвуют в обменных процессах. Незаменимые жирные кислоты регулируют обмен холестерина, действуют на стенки кровеносных сосудов, увеличивая их эластичность.

4.Полиненасыщенные жирные кислоты (ПНЖК) образуют в организме гормоноподобные вещества - простагландины, лейкотриены, простациклины, тромбоксаны.

5.Жировые клетки секретируют гормоны, именуемые цитокинами, которые составляют часть защитного механизма иммунной системы.

6.Жиры являются строительным материалом для некоторых тканей (мозга, нервной); резервным материалом, откладывающимся в некоторых тканях; смазочным, теплоизоляционным, амортизирующим средством.

7.Арахидоновая жирная кислота является предшественником тканевых гормонов, участвующих в процессах активизации свертывающей и противосвертывающей систем крови.

Снижение содержания жира в организме женщины ниже 14-15% от общей массы тела сдвигает баланс между женскими и мужскими половыми гормонами в сторону последних. Уменьшается выработка эстрогена, необходимого для восстановления костей, т.е. для процесса, который идет в нормальном организме непрерывно. Это вызывает преждевременный остеопороз - заболевание, при котором кости становятся более тонкими и более хрупкими, что, в свою очередь, увеличивает риск возникновения переломов. Поэтому не следует снижать содержание жира ниже физиологической нормы.

Надеюсь, понятно, что жиры играют огромную роль в обеспечении жизни нашего организма. Но и избыточное количество липидов в рационе вредно, так как значительно ухудшает усвоение белков, кальция и магния, повышает потребность в витаминах, участвующих в жировом обмене. Что приводит к формированию патологии (атеросклероз, желчно-каменная болезнь и др). Следовательно, при избытке жира в питании и откладывании его в жировой ткани сверх нормы пагубное действие жиров начинает преобладать над полезными свойствами.

Метаболизм липидов

Контролирование уровня насыщения осуществляется двумя различными способами. Жиры, попадая в желудок, стимулируют секрецию гормона эстерогастрона, который препятствует проходу пищи через желудочно-кишечный тракт; жирная пища дольше находится в желудке, замедляя пищеварение. Одновременно, жирная пища стимулирует секрецию гормона холецистокининапанкреозимина (гормон ССК), который дает знать мозгу о том, что в желудоке есть пища.

Переваривание и всасывание липидов. Переваривание липидов происходит в тонком отделе кишечника и частично в желудке. Желудочная липаза действует только на хорошо эмульгированные жиры, например, на жиры молока, и почти не гидролизует другие жиры. Панкреатическая липаза – наиболее важный фермент, участвующий в гидролитическом расщеплении жиров. (КФ. 3.1.1.3.)

Панкреатическая липаза синтезируется в поджелудочной железе и с панкреатическим соком поступает в 12-ти перстную кишку, оптимум рН 7,2. Липаза активируется желчными кислотами и действует только на высокоэмульгированные жиры. Важнейшую роль в гидролизе жиров играют желчные кислоты: холевая, литохолевая, гликохолевая, которые являются производными холестерола (рис.2). Желчные кислоты синтезируются в печени из холестерола и поступают в 12-ти перстную кишку с желчью. Поступление желчи стимулируется гормоном тонкого кишечника – холецистокинином. На гидролиз 100 г жиров необходимо 240 г желчи.

Желчные кислоты – (первичные хенодезоксихолевая и холевая) образуются в клетках печени из холестерина.

После выделения в кишечник под влиянием бактерий они преобразуются во вторичные (литохолевая и дезоксихолевая). В кишечник желчные кислоты поступают в составе желчи в виде конъюгатов с глицином и таурином. После переваривания и всасывания желчные кислоты возвращаются через воротную вену в печень, совершая такой цикл до 10 раз в сутки. Этот цикл называется кишечно-печеночная циркуляция желчных кислот. Постоянным компонентом желчи является холестерин. Как и желчные кислоты, он подвергается обратному всасыванию, но некоторое количество желчных кислот и холестерина теряются с калом. Для восполнения потери желчных кислот, выводимых с фекалиями, происходит постоянно синтез желчных кислот из холестерина. Получается, что удаление холестерина в свободном виде или в виде желчных кислот является единственным способом освобождения организма от него.

Роль желчи в пищеварении:

1.Соли желчных кислот эмульгируют жиры, снижая их поверхностное натяжение. Размер частиц эмульгированного жира 0,5 мк;

2.Желчные кислоты активируют липазу;

3.Желчь и желчные кислоты оказывают бактериостатическое действие на вредную микрофлору кишечника;

4.Желчные кислоты участвуют во всасывании жирных кислот;

5. Желчь вместе с бикарбонатами поджелудочной железы нейтрализует кислое содержимое желудка и создает оптимальные условия для действия липазы.

У человека, даже получающего достаточное количество пищи значительная часть депонированных липидов ежесуточно используется. Липиды, поступающие в печень, могут храниться или распадаться. Триацилглицерины жировых депо используются как источник энергии. Их мобилизация происходит при участии гормонов: адреналина и норадреналина, а также стероидов надпочечнков, глюкагона. На мобилизацию жиров из жировых депо влияют также вазопрессин, тиротропин, адренокортикотропин, липотропин, которые стимулируютлиполиз. Жиры отличаются от гликогена очередностью мобилизации. При голодании и физической нагрузке вначале мобилизуется гликоген, затем по мере расходования гликогена нарастает скорость мобилизации липидов. В жировой ткани интенсивно протекает липогенез. Источником для синтеза ЖК и глицерина служат метаболиты глюкозы.

Внутриклеточный метаболизм липидов включает:

1) мобилизацию жира из жировых депо, их гидролиз внутриклеточными липазами, окисление глицерина и ЖК, сопровождающееся большим энергетическим эффектом.

2)Синтез глицерина и жирных кислот из метаболитов глюкозы

3)Синтез простых и сложных липидов