Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лр5(1).docx
Скачиваний:
30
Добавлен:
17.03.2016
Размер:
297.41 Кб
Скачать

Химический состав в % стали 30хгса

C

0,28 - 0,34

Si

0,9 - 1,2

Mn

0,8 - 1,1

Ni

до 0,3

S

до 0,025

P

до 0,025

Cr

0,8 - 1,1

Cu

до 0,3

Fe

~96

 

Зарубежные аналоги марки стали 30ХГСА

Болгария

30ChGSA

Польша

30HGS, 30HGSA

Чехия

14331

 

Свойства и полезная информация:

Термообработка: Закалка 880oC, масло, Отпуск 540oC, вода Температура ковки, °С: начала 1240, конца 800. Сечения до 50 мм охлаждаются на воздухе, 51-100 мм - в ящиках. Твердость материала: HB 10 -1 = 229 МПа Температура критических точек: Ac1 = 760 , Ac3(Acm) = 830 , Ar3(Arcm) = 705 , Ar1 = 670 , Mn = 352 Свариваемость материала: ограниченно свариваемая. Способы сварки РДС, АДС под флюсом и газовой защитой, АрДС, ЭШС. Рекомендуется подогрев и последующая термообработка. КТС без ограничений. Подробно о АРД/TIG сварке стали 30ХГСА.Обрабатываемость резанием: в горячекатанном состоянии при HB 207-217 и σв=710 МПа,  К υ тв. спл=0,85 и Кυ б.ст=0,75 Флокеночувствительность: чувствительна. Склонность к отпускной хрупкости: склонна.

Режим термообработки стали

В соответствии с заданием необходимо выбрать режим термообработки стали. Сталь 60С2ХА содержит 0,6% C и является конструкционной доэвтектоидной сталью. Наиболее оптимальным режимом термообработки является закалка и средний отпуск.

По Данным ГОСТ 14959-79 для стали 60С2ХА составляет 830 °С (AC3 =780 °С) в качестве охлаждающей среды выбираем масло. Отпуск производим при температуре 420°С (средний отпуск), выше температуры необратимой отпускной хрупкости, охлаждающая среда - вода. Получаемая структура троостита отпуска обеспечивает высокое сопротивление малой пластической деформации при HRC = 35…45, при этом σ0,2/σв > 0,85.

Структурные превращения при термической обработке

Сталь 60С2ХА - сталь перлитного класса. Критические точки стали AC1 = 765 ± 10°С

AC3 = 780 ± 10°С Сталь подвергают полной закалке при этом ее нагревают до образования однородной мелкозернистой аустенитной структуры.

Последующее охлаждение в масле со скоростью большей, чем Vкр (наименьшая скорость охлаждения, при которой аустенит превращается в мартенсит), обеспечивает получение мелкозернистого мартенсита.

Рассмотрим превращения, происходящие в стали 60С2ХА при нагреве исходной равновесной структуры Ф+Ц .На практике при обычных скоростях нагрева (электропечи) под закалку перлит сохраняет своё пластинчатое или зернистое строение до температуры АС1 (765 °С для стали 60С2ХА). При температуре АС1 в стали происходит превращение перлита в аустенит. Кристаллы (зерна) аустенита зарождаются в основном на границах фаз феррита и цементита. При этом параллельно развиваются 2 процесса: полиморфный переход Feα →Feγ и растворение цементита в аустените.

Представим общую схему превращения:

П(Ф+Ц) →Ф+Ц+А→А+Ц→А(неоднородный) →А(гомогенный) .

Образование зерен аустенита происходит с большей скоростью, чем растворение цементита перлита, поэтому необходима выдержка стали при температуре закалки для полного растворения цементита и получения гомогенного аустенита.

При этом, чем выше дисперсность структуры перлита (Ф+Ц) и скорость нагрева стали, тем больше возникает центров зарождения аустенита, а следовательно, возрастает дисперсность продуктов его распада. Увеличение дисперсности продуктов распада аустенита приводит к увеличению пластичности, вязкости, уменьшению чувствительности к концентраторам напряжений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]