Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
волхова реферат.docx
Скачиваний:
15
Добавлен:
17.03.2016
Размер:
60.86 Кб
Скачать

Нулевое электрическое сопротивление

Для постоянного электрического тока электрическое сопротивление сверхпроводника равно нулю. Это было продемонстрировано в ходе эксперимента, где в замкнутом сверхпроводнике был индуцирован электрический ток, который протекал в нём без затухания в течение 2,5 лет (эксперимент был прерван забастовкой рабочих, подвозивших криогенные жидкости).

Фазовый переход в сверхпроводящее состояние

Строго говоря, утверждение о том, что сопротивление сверхпроводников равно нулю справедливо только для постоянного электрического тока. В переменном электрическом поле сопротивление сверхпроводника отлично от нуля и растёт с увеличением частоты поля. Этот эффект на языке двухжидкостной модели сверхпроводника объясняется наличием наравне со сверхпроводящей фракцией электронов также и обычных электронов, число которых, однако, невелико. При помещении сверхпроводника в постоянное поле, это поле внутри сверхпроводника обращается в нуль, поскольку иначе сверхпроводящие электроны ускорялись бы до бесконечности, что невозможно. Однако в случае переменного поля поле внутри сверхпроводника отлично от нуля и ускоряет в том числе и нормальные электроны, с которыми связаны и конечное электрическое сопротивление, и джоулевы тепловые потери. Данный эффект особо ярко выражен для таких частот света, для которых энергии кванта достаточно для перевода сверхпроводящего электрона в группу нормальных электронов. Эта частота обычно лежит в инфракрасной области (около 1011 Гц), поэтому в видимом диапазоне сверхпроводники практически ничем не отличаются от обычных металлов[9].

Фазовый переход в сверхпроводящее состояние

Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвинаи поэтому имеет смысл определённое значение Тс— температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь — от наличия примесей и внутренних напряжений. Известные ныне температуры Тсизменяются в пределах от 0,0005 К умагния(Mg) до 23,2 К уинтерметаллиданиобияигермания(Nb3Ge, в плёнке) и 39 К удиборида магния(MgB2) у низкотемпературных сверхпроводников (Тсниже 77 К, температуры кипения жидкого азота), до примерно 135 К у ртутьсодержащих высокотемпературных сверхпроводников.

В настоящее время фаза HgBa2Ca2Cu3O8+d(Hg−1223) имеет наибольшее известное значение критической температуры — 135 К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164 К, что лишь на 19 К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.15 К) к ртутьсодержащим высокотемпературным сверхпроводникам (164 К). В 2000 г. было показано, что небольшое фторирование упомянутой выше ртутной керамики позволяет поднять критическую температуру при обычном давлении до 138 К[10].

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тcтеплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачоктеплоёмкость, что характерно дляфазового перехода ΙΙ рода. Такая температурная зависимость теплоемкости электронной подсистемы сверхпроводника свидетельствует о наличии энергетической щели в распределении электронов между основным состоянием сверхпроводника и уровнем элементарных возбуждений. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.