Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

11_13

.doc
Скачиваний:
14
Добавлен:
16.03.2016
Размер:
355.33 Кб
Скачать

Электронные конфигурации атомов

Общее число электронов в атоме определяется зарядом его ядра, т. е. протонным числом. Оно равно атомному номеру элемента. Электроны в зависимости от их энергии распределяются в атоме по энергетическим уровням и подуровням, каждый из которых состоит из определенного числа орбиталей.

Распределение электронов выражается с помощью электронных формул (или электронных конфигураций) атома. Например, у водорода, элемента с атомным номером 1, электронная формула: 1Н 1s1. В этой формуле цифрой записывается номер энергетического уровня, затем следует буква, обозначающая тип подуровня, и, наконец, цифра вверху справа указывает число электронов на этом подуровне.

Схематически электронное строение атома изображается с помощью электронно-графической схемы, в которой орбитали представляются в виде клеток, а электроны - в виде стрелок.

Электронно-графическая схема атома водорода записывается так:

Для правильного изображения электронных формул необходимо соблюдать несколько основных правил.

1-е правило: Распределение электронов в атоме, находящемся в основном (наиболее устойчивом) состоянии, определяется принципом минимума энергии: основному состоянию атома соответствуют наиболее низкие из возможных энергетические уровни и подуровни.

Поэтому электроны (у атомов элементов первых трех периодов) заполняют орбитали в порядке увеличения их энергии:

1s→2s→2p→3s→3p

2-е правило: На каждой орбитали максимально может находиться не более двух электронов, причем с противоположными спинами.

Таким образом, у следующего за водородом гелия 2Не электронная формула:

2Не 1s2 , а электронно-графическая схема:

Поскольку на первом электронном слое могут находиться только два электрона, то этот слой в атоме гелия является завершенным и, следовательно, очень устойчивым.

У атомов элементов второго периода заполняется второй энергетический уровень, на котором может находиться не более 8 электронов. Сначала электроны заполняют 2s-орбиталь (у атомов лития и бериллия):

Поскольку 2s-орбиталь заполнена, то пятый электрон у атома бора В занимает одну из трех 2p-орбиталей. Электронная формула атома бора:

5В 1s2 2s2 2p1

а электронно-графическая схема:

Обратите внимание, что подуровень 2p изображен вплотную к подуровню 2s, но несколько выше. Так подчеркивается его принадлежность к одному и тому же уровню (второму) и одновременно больший запас энергии.

3-е правило. Устанавливает порядок заполнения орбиталей одного подуровня. Электроны одного подуровня сначала заполняют орбитали по одному (т. е. все пустые), а если число электронов больше, чем число орбиталей, то по два. Следовательно, электронные формулы атомов углерода и азота:

6C 1s22s22p2     и     7N 1s22s22p3  

а электронно-графические схемы:

У атомов кислорода, фтора и неона число электронов увеличивается, и они вынуждены размещаться на р-орбиталях второго энергетического уровня по два:

6O 1s22s22p4;     6F 1s22s22p5;    6Ne 1s22s22p6

Электронно-графические схемы атомов этих элементов:

Электронная конфигурация внешнего слоя 2s22p6 соответствует его полному заполнению и поэтому является устойчивой.

В атомах элементов третьего периода начинает формироваться третий электронный слой. Сначала заполняется электронами s-подуровень у натрия и магния:

11Na 1s22s22p63s1      12Mg 1s22s22p63s2

а затем р-подуровень у алюминия, кремния, хлора и аргона:

18Ar 1s22s22p63s23p6

       Электронно-графическая схема для атома аргона:

В атоме аргона на внешнем электронном слое находится 8 электронов. Следовательно, он завершен, так как в атоме любого элемента на внешнем энергетическом уровне максимально может находиться не более 8 электронов.

Застраивание третьего электронного слоя этим не исчерпывается. В соответствии с формулой 2n2 на нем может находиться 18 электронов: 8 на s- и р-подуровнях и 10  - на d-подуровне. Этот подуровень будет формироваться у элементов четвертого периода. Но сначала у первых двух элементов четвертого периода - калия и кальция - появляется четвертый электронный слой, который открывается s-подуровнем (энергия подуровня 4s несколько меньше, чем подуровня 3d:

19K 1s22s22p63s23p64s1   и   19Са 1s22s22p63s23p64s2

Только после этого начнет заполняться электронами d-подуровень третьего, теперь уже предвнешнего, энергетического уровня. Электронная конфигурация атома скандия:

21Sc 1s22s22p63s23p64s23d1,

атома титана:   

           21Ti 1s22s22p63s23p64s23d2,

и т. д., вплоть до цинка. Электронная конфигурация его атома:

21Zn 1s22s22p63s23p64s23d10,

а электронно-графическая схема:

Поскольку у элементов четвертого периода заполняются электронами только орбитали третьего и четвертого энергетических уровней, то на электронно-графических схемах обычно не указывают полностью заполненные уровни (в данном случае первый и второй). Вместо них в электронных формулах пишут символ ближайшего элемента VIII A-группы с полностью заполненными энергетическими s- и р-подуровнями: например, электронная формула хлора - [Ne]3s23p5, цинка - [Ar]3d104s2, а сурьмы - 51Sb -[Kr]4d105s25p3

Кроме электронных формул и электронно-графических схем, иногда используют и электронные схемы атомов, в которых указывают только число электронов на каждом энергетическом уровне (электронном слое):

Электронное строение атома определяется зарядом его ядра, который   равен атомному номеру элемента в периодической системе.

Распределение электронов по энергетическим уровням, подуровням и орбиталям отображают с помощью электронных формул и электронно-графических схем, а также электронных схем атомов.

На внешнем электронном слое в атоме любого элемента может находиться не более 8 электронов. 3.2. Типы химических связей

Ковалентная связь – наиболее общий вид химической связи, возникающий за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму, если электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору) (рис. 3.2).

Рисунок 3.2

Обменный (а) и донорно-акцепторный (б) механизмы образования ковалентной связи

Классический пример неполярной ковалентной связи (разность электроотрицательностей равна нулю) наблюдается у гомоядерных молекул: H–H, F–F. Энергия двухэлектронной двухцентровой связи лежит в пределах 200–2000 кДж∙моль–1.

При образовании гетероатомной ковалентной связи электронная пара смещена к более электроотрицательному атому, что делает такую связь полярной. Ионность полярной связи в процентах вычисляется по эмпирическому соотношению 16(χA – χB) + 3,5(χA – χB)2, где χA и χB – электроотрицательности атомов А и В молекулы АВ. Кроме поляризуемости ковалентная связь обладает свойством насыщаемости – способностью атома образовывать столько ковалентных связей, сколько у него имеется энергетически доступных атомных орбиталей. О третьем свойстве ковалентной связи – направленности – речь пойдет ниже (см. метод валентных связей).

Ионная связь – частный случай ковалентной, когда образовавшаяся электронная пара полностью принадлежит более электроотрицательному атому, становящемуся анионом. Основой для выделения этой связи в отдельный тип служит то обстоятельство, что соединения с такой связью можно описывать в электростатическом приближении, считая ионную связь обусловленной притяжением положительных и отрицательных ионов. Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщености. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона). Ионные пары могут существовать в газообразном состоянии в виде полярных молекул. В газообразном состоянии NaCl имеет дипольный момент ~3∙10–29 Кл∙м, что соответствует смещению 0,8 заряда электрона на длину связи 0,236 нм от Na к Cl, т. е. Na0,8+Cl0,8–.

Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Силы связи не локализованы и не направлены, а делокализированные электроны обусловливают высокую тепло- и электропроводность.

Модель 3.1. Виды химической связи

Водородная связь. Ее образование обусловленно тем, что в результате сильного смещения электронной пары к электроотрицательному атому атом водорода, обладающий эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20–100 кДж∙моль–1. Водородные связи могут быть внутри- и межмолекулярными. Внутримолекулярная водородная связь образуется, например, в ацетилацетоне и сопровождается замыканием цикла (рис. 3.3).

Молекулы карбоновых кислот в неполярных растворителях димеризуются за счет двух межмолекулярных водородных связей (рис. 3.4).

Рисунок 3.3

Образование внутримолекулярной водородной связи

Рисунок 3.4

Образование межмолекулярной водородной связи

Исключительно важную роль водородная связь играет в биологических макромолекулах, таких неорганических соединениях как H2O, H2F2, NH3. За счет водородных связей вода характеризуется столь высокими по сравнению с H2Э (Э = S, Se, Te) температурами плавления и кипения. Если бы водородные связи отсутствовали, то вода плавилась бы при –100 °С, а кипела при –80 °С.

Ван-дер-ваальсова (межмолекулярная) связь – наиболее универсальный вид межмолекулярной связи, обусловлен дисперсионными силами (индуцированный диполь – индуцированный диполь), индукционным взаимодействием (постоянный диполь – индуцированный диполь) и ориентационным взаимодействием (постоянный диполь – постоянный диполь). Энергия ван-дер-ваальсовой связи меньше водородной и составляет 2–20 кДж∙моль–1.

Химическая связь в твердых телах. Свойства твердых веществ определяются природой частиц, занимающих узлы кристаллической решетки и типом взаимодействия между ними.

Твердые аргон и метан образуют атомные и молекулярные кристаллы соответственно. Поскольку силы между атомами и молекулами в этих решетках относятся к типу слабых ван-дер-ваальсовых, такие вещества плавятся при довольно низких температурах. Большая часть веществ, которые при комнатной температуре находятся в жидком и газообразном состоянии, при низких температурах образуют молекулярные кристаллы.

Температуры плавления ионных кристаллов выше, чем атомных и молекулярных, поскольку электростатические силы, действующие между ионами, намного превышают слабые ван-дер-ваальсовы силы. Ионные соединения более твердые и хрупкие. Такие кристаллы образуются элементами с сильно различающимися электроотрицательностями (например, галогениды щелочных металлов). Ионные кристаллы, содержащие многоатомные ионы, имеют более низкие температуры плавления; так для NaCl tпл. = 801 °C, а для NaNO3 tпл = 306,5 °C.

Рисунок 3.5

Кварц – кристаллическая форма оксида кремния

В ковалентных кристаллах решетка построена из атомов, соединенных ковалентной связью, поэтому эти кристаллы обладают высокими твердостью, температурой плавления и низкими тепло- и электропроводностью.

Кристаллические решетки, образуемые металлами, называются металлическими. В узлах таких решеток находятся положительные ионы металлов, в межузлиях – валентные электроны (электронный газ).

Наибольшую температуру плавления из металлов имеют d-элементы, что объясняется наличием в кристаллах этих элементов ковалентной связи, образованной неспаренными d-электронами, помимо металлической, образованнной s-электронами.

Метод валентных связей (МВС) иначе называют теорией локализованных электронных пар, поскольку в основе метода лежит предположение, что химическая связь между двумя атомами осуществляется с помощью одной или нескольких электронных пар, которые локализованы преимущественно между ними. В отличие от ММО, в котором простейшая химическая связь может быть как двух-, так и многоцентровой, в МВС она всегда двухэлектронная и обязательно двухцентровая. Число элементарных химических связей, которые способен образовывать атом или ион, равно его валентности. Так же, как и в ММО, в образовании химической связи принимают участие валентные электроны. Волновая функция, описывающая состояние электронов, образующих связь, называется локализованной орбиталью (ЛО).

Отметим, что электроны, описываемые ЛО, в соответствии с принципом Паули должны иметь противоположно направленные спины, то есть в МВС все спины спарены, и все молекулы должны быть диамагнитны. Следовательно, МВС принципиально не может объяснить магнитные свойства молекул.

Тем не менее, принцип локализованных связей имеет ряд важных преимуществ, одно из которых – его чрезвычайная наглядность. МВС достаточно хорошо, например, предсказывает валентные возможности атомов и геометрию образующейся молекулы. Последнее обстоятельство связано с так называемой гибридизацией АО. Она была введена для объяснения того факта, что двухэлектронные двухцентровые химические связи, образованные за счет АО в разных энергетических состояниях, имеют одинаковую энергию. Так, Be*(2s11p1), B*(2s12p2), C*(2s12p3) образуют за счет s- и p-орбиталей соответственно две, три и четыре связи, а потому одна из них должна быть прочнее других. Однако опыт показывает, что в BeH2, BCl3, CH4 все связи равноценны. У BeH2 угол связи равен 180°, у BCl3 – 120°, а у CH4 – 109°28'.

Модель 3.4. Гибридизация орбиталей

Согласно представлению о гибридизации, химические связи образуются смешанными – гибридными орбиталями (ГО), которые представляют собой линейную комбинацию АО данного атома (s- и p-АО Be, B, C), обладают одинаковыми энергией и формой, определенной ориентацией в пространстве (симметрией). Так s- и p-орбитали дают две sp-ГО, расположенные под углом 180° друг относительно друга.

Рисунок 3.16

s-орбиталь + p-орбиталь и две sp-ГО

В молекуле CH4 гибридные орбитали из четырех АО углерода (одной s и трех p), называются sp3-орбиталями, они полностью эквивалентны энергетически и пространственно направлены к вершинам тетраэдра.

Таким образом, когда один атом образует несколько связей, а его валентные электроны принадлежат разным орбиталям (s и p; s, p и d), для объяснения геометрии молекул в МВС необходимо привлекать теорию гибридизации атомных орбиталей. Основные положения теории следующие:

  1. Введение гибридных орбиталей служит для описания направленных локализованных связей. Гибридные орбитали обеспечивают максимальное перекрывание АО в направлении локализованных σ-связей.  

  2. Число гибридных орбиталей равно числу АО, участвующих в гибридизации.  

  3. Гибридизуются близкие по энергии валентные АО независимо от того, заполнены они в атоме полностью, наполовину или пусты.  

  4. В гибридизации участвуют АО, имеющие общие признаки симметрии.

Согласно табл. 3.3 гибридные орбитали дают молекулы с углами 180°, 120°, 109°28', 90°. Это правильные геометрические фигуры. Такие молекулы образуются, когда все периферические атомы в многоэлектронной молекуле (или ионе) одинаковы и их число совпадает с числом гибридных орбиталей. Однако, если число гибридных орбиталей больше числа связанных атомов, то часть гибридных орбиталей заселена электронными парами, не участвующими в образовании связи, – несвязывающими или неподеленными электронными парами.

sp

180°

 

линейная

H–Be–H, HC≡CH

sp2

120°

 

плоская треугольная

H2C=CH2, C6H6, BCl3

sp3

109°28'

 

тетраэдрическая

[NH4]+, CH4, CCl4, H3C–CH3

sp2d

90°

 

квадратная

[Ni(CN)4]2–, [PtCl4]2–

sp3d или dsp3

90°, 120°

 

триагонально-бипирамидальная

PCl5

d2sp3 или sp3d2

90°

 

октаэдрическая

[Fe(CN)6]3–, [CoF6]3–, SF6

Таблица 3.3

Гибридные орбитали и геометрия молекул

В качестве примера рассмотрим молекулы NH3 и H2O. Атомы азота и кислорода склонны к sp3-гибридизации. У азота на sp3-ГО, поимо трех связывающих пар электронов, образующих связь с тремя атомами водорода, остается одна несвязывающая пара. Именно она, занимая одну sp3-ГО, искажает угол связи H–N–H до 107,3°. В молекуле H2O таких несвязывающих пар две, и угол H–O–H равен 104,5° (рис. 3.17).

Рисунок 3.17

Несвязывающие электронные пары и углы связи в молекулах NH3 и H2O в сравнении с молекулой CH4

Электроны связывающих и несвязывающих пар по-разному взаимодействуют между собой. Чем сильнее межэлектронное отталкивание, тем больше условная поверхность на сфере, занимаемый электронной парой. Для качественного объяснения экспериментальных фактов обычно считается, что несвязывающие пары занимают больший объем, чем связывающие, а объем связывающих пар тем меньше, чем больше электроотрицательности периферийных атомов (метод Гиллеспи).

Физические свойства металлов.

Плотность. Это - одна из важнейших характеристик металлов и сплавов. по плотности металлы делятся на следующие группы:

легкие (плотность не более 5 г/см3) - магний, алюминий, титан и др.:

тяжелые - (плотность от 5 до 10 г/см 3) - железо, никель, медь, цинк, олово и др. (это наиболее обширная группа);

очень тяжелые (плотность более 10 г/см 3) - молибден, вольфрам, золото, свинец и др.

В таблице 2 приведен значения плотности металлов. (Это и последующие таблицы характеризуют свойства тех металлов, которые составляют основу сплавов для художественного литья).

Таблица 2. Плотность металла.

Металл

Плотность г/см3

Металл

Плотность г/см3

Магний

1,74

Железо

7,87

Алюминий

2,70

Медь

8,94

Титан

4,50

Серебро

10,50

Цинк

7,14

Свинец

11,34

Олово

7,29

Золото

19,32

Температура плавления. В зависимости от температуры плавления металл подразделяют на следующие группы:

легкоплавкие (температура плавления не превышает 600 oС) - цинк, олово, свинец, висмут и др.;

среднеплавкие (от 600 oС до 1600 oС) - к ним относятся почти половина металлов, в том числе магний, алюминий, железо, никель, медь, золото;

тугоплавкие ( более 1600 oС) - вольфрам, молибден, титан, хром и др.

Ртуть относится к жидкостям.

При изготовлении художественных отливок температура плавления металла или сплава определяет выбор плавильного агрегата и огнеупорного формовочного материала. При введении в металл добавок температура плавления, как правило, понижается.

Таблица 3. Температура плавления и кипения металлов.

Металл

Температура,

Металл

Температура,

плавления

кипения

плавления

кипения

Олово

232

2600

Серебро

960

2180

Свинец

327

1750

Золото

1063

2660

Цинк

420

907

Медь

1083

2580

Магний

650

1100

Железо

1539

2900

Алюминий

660

2400

Титан

1680

3300

Удельная теплоемкость. Это количество энергии, необходимое для повышения температуры единицы массы на один градус. Удельная теплоемкость уменьшается с увеличением порядкового номера элемента в таблице Менделеева. Зависимость удельной теплоемкости элемента в твердом состоянии от атомной массы описывается приближенно законом Дюлонга и Пти:

ma cm = 6.

где, ma - атомная масса; cm - удельная теплоемкость (Дж/кг * oС).

В таблице 4 приведены значения удельной теплоемкости некоторых металлов.

Таблица 4. Удельная теплоемкость металлов.

Металл

Температура,oС

Удельная теплоемкость, Дж/кг * oС

Металл

Температура,oС

Удельная теплоемкость, Дж/кг * oС

Магний

0-100 225

1,03 1,18

Цинк

0 св.420

0,35 0,51

Титан

0-100 440

0,47 068

Серебро

0 427

0,23 0,25

Медь

97,5 Св.1100

0,40 0,55

Олово

0 240

0,22 0,27

Алюминий

0-100 660

0,87 1,29

Золото

0-100 1100

0,12 0,15

Железо

0-100 1550

0,46 1,05

Свинец

0 300

0,12 0,14

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]