Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Матрицы векторы.doc
Скачиваний:
25
Добавлен:
16.03.2016
Размер:
309.76 Кб
Скачать

6. Функции от матриц

6.1. Степени матриц

Произведение матриц AAA…A, где A – квадратная матрица порядка n, можно записать в виде Ak, где k означает число сомножителей, входящих в произведение. Это произведение называется k-й степенью матрицы A. Оно обладает свойствами

Те же правила справедливы при возведении матрицы в отрицательную степень при условии, что матрица неособенная, то есть существует обратная матрица. Имеем

Подобные правила применяются и в случае вычисления дробной степени матрицы. Так, если Am=B, то A является корнем m-й степени B. Не существует общего правила определения, каким количеством корней степени m обладает матрица B, – число корней зависит от вида матрицы.

6.2. Функции от матриц

Матричный многочлен – это выражение вида

Разложение на множители этого многочлена, или факторизация матричного многчлена, имеет вид

Бесконечный ряд матриц:

Геометрический ряд:

Экспоненциальная функция

Можно показать, что этот ряд сходится равномерно и абсолютно. Произведение матричных экспонент:

eAeB=eA+B

Синусоидальная функция:

Косинусоидальная функция:

, где комплексная экспонента определяется как

Гиперболический синус

Гиперболический косинус

6.3. Теоремы о функциях от матриц

Теорема Кэли-Гамильтона: матрица A удовлетворяет собственному характеристическому уравнению. Этот результат можно записать в виде:

На основе этой теоремы можно представить многочлен n-го порядка от матрицы A в виде линейной комбинации I, A, A2, …, An-1 или многочлена n-й степени относительно A.

Теорема Сильвестра: если N(A) – матричный многочлен от A и если квадратная матрица A содержит n различных характеристических чисел, то многочлен от A можно записать в виде

Можно показать, что

где P() – характеристический многочлен A, а потому теорема Сильвестра может быть записана в виде

Если матрица A содержит кратные характеристические корни, то необходимо использовать так называемую вырожденную форму теоремы Сильвестра. Пусть характеристический корень имеет порядок s. Тогда член суммы, соответствующий кратному корню i, можно представить в виде

7. Квадратичная форма

Квадратичной формой называется выражение:

Этой квадратичной форме соответствует матрица

Сделаем следующее преобразование с каждым членом квадратичной формы:

a12x1x2+a21x2x1=x1x2(a12+a21)=0.5(a12+a11)x1x2+0.5(a12+a11)x1x2

Как видно, матрица, соответствующая этой квадратичной форме, является симметрической. Квадратичную форму можно представить в матричном виде:

Квадратичная форма имеет канонический вид, если она содержит только квадраты переменных, то есть

Ей соответствует диагональная матрица A=diag(I). Следовательно, чтобы привести квадратичную форму к каноническому виду, нужно выполнить над ней такое преобразование, которое приведет матрицу, соответствующую ей, к каноническому виду, например, диагонализацию матрицы.

Если над квадратичной формой сделано некоторое линейное преобразование, то первоначальная и полученная квадратичные формы называются конгруэнтными.

Пусть над квадратичной формой сделано преобразование вида:

или короче Y=BX, где B=[bij]. Тогда квадратичная форма после преобразования принимает вид

F(Y)=YTAY

F(X)=(BX)TABX=XTBTABX=XTCX, где C=BTAB.

Квадратичная форма в независимости от выбора базиса в каноническом виде имеет одинаковое количество положительных и отрицательных коэффициентов.

Квадратичная форма называется положительно определенной, если для любого xR

F(X, X)>0

и отрицательно определенной, если для любого xR

F(X, X)<0.

В случае нестрогого неравенства квадратичная форма называется положительно полуопределенной и отрицательно полуопределенной соответственно.

Чтобы определить положительность квадратичной формы, служит критерий Сильвестра: квадратичная форма является положительно определенной тогда и только тогда, когда все угловые миноры матрицы, соответствующей этой квадратичной форме, положительны. Квадратичная форма является отрицательно определенной тогда и только тогда, когда угловые миноры матрицы, соответствующей этой квадратичной форме, будут чередоваться по знакам, начиная с отрицательного.