Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен исправленный.doc
Скачиваний:
24
Добавлен:
04.03.2016
Размер:
1.63 Mб
Скачать

2. Контактором называется электромагнитный аппарат дистанционного действия, предназначенный для частых включений и отключений под нагрузкой электрической силовой цепи.

Кроме включения и отключения, контактор осуществляет также нулевую защиту электродвигателей, т. е. отключает его при исчезновении напряжения в питающей сети, а при повторной подаче напряжения сам не включается.

В дистанционном управлении электродвигателями контактор находит самое широкое применение.

По принципу действия контактор представляет собой выключа­тель с контактами, управляемыми электромагнитом. Основными частями контактора являются: главные контакты, магнитная сис­тема, втягивающая катушка, дугогасительное устройство, блок- контакты. Проследим работу контактора на примере действия контактора переменного тока типа КТ, изготовляемого отечественной промышленностью. Устройство этого контактора изображено на

а на рис. 2 приведена развернутая электрическая схема вклю­чения контактора совместно с двух штифтовой кнопкой управления. Если нажать кнопку «пуск», то образуется электрическая цепь: ток идет от фазы Л, к втягивающей катушке К, далее через размыкающие контакты кнопки «стоп», через кнопку «пуск» (замкнутую при нажатии) и к фазе Л3. Вследствие прохождения тока через втягивающую катушку 5 неподвижная часть магнитной системы 1 (ярмо с сердечником на рис. 2) намагничивается и притягивает

подвижную часть магнитной системы (якорь 3). Якорь, будучи скреплен с валом контактора, поворачивает его и замыкает под­вижный контакт 10 с неподвижным 11 (на рис. 2 контакты ГК). Кроме того, сработают также замыкающие блок-контакты 9, а блок-контакты 8 размыкаются. После включения контактора кнопка «пуск» может быть отпущена, причем электри­ческая цепь этим не разрывается, так как ток идет теперь по замк­нутой цепи: фаза Л1 — втягивающая катушка К — кнопка «стоп» — блок-контакт БК (который теперь замкнут) и фаза Л3. При на­жатии кнопки «стоп» цепь управления размыкается, и вал якоря под действием своего веса отпадает, разрывая силовую цепь.

При уменьшении напряжения ниже определенной величины (да­ется в каталогах в процентах от номинального напряжения) кон­тактор автоматически отключается, так как вес подвижных частей контактора превышает силу взаимодействия подвижной и непод­вижной частей магнитной системы при сниженном напряжении. Если напряжение подано, а кнопка «пуск» не нажимается, то контактор не срабатывает, так как цепь втягивающей катушки разомк­нута. Этим обеспечивается нулевая защита электродвигателя.

Контакторы изготовляются для работы в цепях постоянного и переменного тока.

3. Устройство приборов магнитоэлектрической системы. Электроизмерительные приборы магнитоэлектрической системы предназначены для измерения силы тока и напряжения в цепях постоянного тока. Работа приборов магнитоэлектрической системы основана на взаимодействии магнитного поля постоянного магнита с измеряемым током. Схема устройства такого прибора показана на Магнитное поле создается сильным постоянным магнитом (1) подковообразной формы, к ножкам которого прикреплены полюсные наконечники (2), обращенные друг к другу вогнутыми цилиндрическими поверхностями. Между ними неподвижно укреплен железный сердечник из мягкого ферромагнетика (3) в виде цилиндра. В небольшом зазоре между цилиндром и наконечниками может свободно поворачиваться на оси (7) катушка (4). Катушка состоит из алюминиевого каркаса прямоугольной формы с намотанной на нем тонкой проволокой. На той же оси укреплена стрелка (5), конец которой перемещается по шкале. Существенной особенностью магнитного поля этой системы является то, что вектор магнитной индукции В

всюду в кольцевом зазоре между магнитом и сердечником перпендикулярен поверхности сердечника и одинаков по величине. (Рис.3)

Рис.3 Примерный вид линий магнитного поля в зазоре между полюсными наконечниками магнита и сердечником. Благодаря этому, момент сил, действующих на рамку со стороны магнитного поля при пропускании через нее измеряемого тока, не зависит от положения рамки в зазоре и равен М1 = ISNB, где I - сила тока в рамке, S - площадь витка, N - число витков, B - магнитная индукция. 8

При повороте рамки под действием магнитного поля на нее действует в обратную сторону момент сил упругости М2 со стороны двух спиральных пружин (6). Момент упругих сил прямо пропорционален углу поворота рамки  : М2 = γ При некотором значении угла  моменты М1 и М2 сравняются. Это и будет положение равновесия рамки с током. При этом между значением угла  и силой тока I существует соотношение  I S N B / γ, из которого следует, что угол отклонения рамки  прямо пропорционален силе тока I, а следовательно, шкала измерительного прибора магнитоэлектрической системы является линейной. Чтобы устранить влияние силы тяжести на стрелку при повороте, к стрелке прикрепляют противовесы, так что общий центр тяжести находится на оси, вокруг которой поворачивается стрелка. Кроме того, в конструкциях приборов данной системы предусмотрено устройство, обеспечивающее плавный подход рамки к положению равновесия. При протекании через прибор тока I напряжение на клеммах прибора будет, очевидно, равно U = I r, где r - внутреннее сопротивление прибора, так что прибор может использоваться в качестве вольтметра при соответствующей градуировке шкалы. Достоинствами магнитоэлектрических приборов являются: высокая чувствительность и точность показаний; равномерность шкалы; нечувствительность к внешним магнитным полям; малое потребление энергии. К недостаткам данной системы относятся возможность измерений только в цепях постоянного тока и чувствительность к перегрузкам (прибор легко перегорает

4 Меры безопасности при работе с мегаомметром. (5.4.2) Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра. (5.4.3) При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг). В электроустановках напряжением выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками. (5.4.4) При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует сиять с токоведущих частей остаточный заряд путем их кратковременного заземления.

Билет№7

Последовательное соединение активного сопротивления, индуктивности емкости.

Устройство защитного отключения УЗО. Схемы применения.

Изерение мощности приборы.

Правила безопасности при выполнении пайки.

Первая помощь при обморожении.

1. В общем случае в цепях переменного тока обычно имеются все виды сопротивлений: активное, индуктивное и емкостное. Например, электрические двигатели переменного тока могут быть представлены эквивалентной схемой, состоящей из индуктивного сопротивления имеющихся в нем катушек и активного сопротивления образующих эти катушки проводов. Воздушные линии элек-

тропередачи или кабельные линии обычно представляют в виде совокупности активного, индуктивного и емкостного сопротивлений. Активное сопротивление обусловлено сопротивлением электрических проводов, индуктивное — индуктивностью линии, а емкостное — емкостью, возникающей между отдельными проводами, между проводами и землей или же между отдельными жилами кабеля и между жилами кабеля и его оболочкой.

Расчет электрических цепей переменного тока существенно отличается от расчета цепей постоянного тока, так как при переменном токе в активном, индуктивном и емкостном сопротивлениях имеют место различные сдвиги фаз между токами и напряжениями.

Ток, напряжение и полное сопротивление. При последовательном включении в цепь переменного тока активного R, индуктивного XL и емкостного Хс сопротивлений (рис. 192, а) к ним приложены напряжения: активное ua=iR, индуктивное uL = iXL и емкостное uc=iXc. Мгновенное значение напряжения и, приложенного к данной цепи, согласно второму закону Кирхгофа равно алгебраической сумме напряжений:

u = ua + uL + uc

Но для действующих значений эта формула неприменима, так как между всеми указанными напряжениями имеется сдвиг по фазе (амплитудные значения этих напряжений не совпадают по

Рис. 193. Треугольник со противлении

времени). Чтобы учесть сдвиг по фазе между напряжениями uа, uL и uc. осуществляют сложение их векторов:

? = ?a + ?L + ?C

Для этого строят векторную диаграмму, на которой откладывают в определенном масштабе векторы тока ? и напряжений ?a, ?L, ?C. Из этих напряжений первое совпадает по фазе с током, второе опережает его на 90°. Векторная диаграмма (рис. 192,б) построена для цепи, в которой индуктивное сопротивление XL больше емкостного Xc (вектор ?L, больше вектора ?C.), а рис. 192, в — для цепи, в которой XL меньше Хс (вектор ?L, меньше вектора ?C). Вектор напряжения U является замыкающим — он сдвинут по фазе относительно вектора тока ? на некоторый угол ?. Напряжение U (действующее значение) может быть определено из треугольника ЛВС по теореме Пифагора:

U = ?(U2a + (UL – Uc)2)

Таким образом, из-за наличия угла сдвига фаз ? напряжение U всегда меньше алгебраической суммы Ua + UL + UC. Разность UL – UC = Up называется реактивной составляющей напряжения.

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

В цепи, содержащей все три вида сопротивления, ток i и напряжение и оказываются сдвинутыми по фазе на некоторый угол ср (рис. 192, г), при этом 0<?<90°.

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения Ua = IR; UL= l?L и UC=I/(?C), то будем иметь: U = ?((IR)2+ [I?L-I/ (?С) ]2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / (? (R2+ [?L-1 / (?С) ]2) ) = U / Z (72)

где Z = ? (R2+ [?L-1 / (?С) ]2) = ? (R2+ (XL – Xc)2)

Величину Z называют полным сопротивлением цепи, оно измеряется в омах. Разность ?L — l/(?C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z = ? (R2+ X2)

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз ? определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

sin ? = X / Z; cos? = R / Z; tg? = X / R

Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол ? сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз ? возрастает и приближается к 90°. При этом,если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол ?; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол ?