Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Технология конструкционных материалов.docx
Скачиваний:
37
Добавлен:
09.06.2015
Размер:
35.88 Кб
Скачать

6.Ручная дуговая сварка.

Для образования и поддержания электрической дуги к электроду и свариваемому изделию от источника питания подводится сварочный ток (переменный или постоянный).

Если положительный полюс источника питания (анод) присоединен к изделию, говорят, что ручная дуговая сварка производится на прямой полярности. Если на изделии отрицательный полюс, то полярность обратная. Под действием дуги расплавляются металлический стержень электрода (электродный металл), его покрытие и металл изделия (основной металл). Электродный металл в виде отдельных капель, покрытых шлаком, переходит в сварочную ванну, где смешивается с основным металлом, а расплавленный шлак всплывает на поверхность.

Размеры сварочной ванны зависят от режимов и пространственного положения сварки, скорости перемещения дуги по поверхности изделия, конструкции сварного соединения, формы и размера разделки свариваемых кромок и т.д. Они обычно находятся в следующих пределах: глубина до 6 мм, ширина 8–15 мм, длина 10–30 мм.

Длина дуги – расстояние от активного пятна на поверхности сварочной ванны до другого активного пятна на расплавленной поверхности электрода. В результате плавления покрытия электрода вокруг дуги и над сварочной ванной образуется газовая атмосфера, оттесняющая воздух из зоны сварки для предотвращения его взаимодействия с расплавленным металлом. В газовой атмосфере также присутствуют пары легирующих элементов, основного и электродного металлов.

Шлак, покрывая капли расплавленного электродного металла и поверхность сварочной ванны, препятствует их взаимодействию с воздухом, а также способствует очищению расплавленного металла от примесей.

По мере удаления дуги металл сварочной ванны кристаллизуется с образованием шва, соединяющего свариваемые детали. На поверхности шва образуется слой затвердевшего шлака.

7.Закалка стали.

Закалка металла происходит при нагреве его выше температуры изменения кристаллической решетки (такая температура называется критической и для каждого металла и сплава она отличается). После нагрева металл быстро охлаждают, чаще всего в воде или масле.

Термическая обработка (закалка) бывает двух типов – без полиморфного превращения (цветные металлы) и с полиморфным превращением (стали). В процессе закалки металл становится более твердым, но одновременно уменьшается его пластичность и вязкость, особенно, если цикл «нагревание-охлаждение» повторять много раз. Чтобы снизить хрупкость и нормализовать вязкость и пластичность, после закалки с полиморфным превращением используют отпуск, который незначительно уменьшает прочность. Для цветных металлов (т.е. для закалки без полиморфного превращения) применяется так называемое «старение» металла.

По температуре нагрева различают два вида закалки – полная и неполная закалка металлов. Неполная закалка используется, как правило, для инструментальных сталей. В процессе полной закалки структура стали становится аустенитной (кристаллическая решетка гранецентрированная, в отличие от объемно-центрированной ферритной решетки).

При изготовлении некоторых изделий закалке подвергается не весь металл, а только часть его. Например только режущая кромка, как это происходит при закалке катан (японских мечей). При этом граница между закаленным и незакаленным металлом (хамон) видна невооруженным глазом.

Технология закалки стали требует быстрого охлаждения в пределах от 650 до 400° С. Длительность нагрева при закалке зависит от вида нагревательного устройства. Опытные данные показывают, что на закалку 1 мм сечения в электрической печи затрачивается от 90 секунд до 2 минут, тогда как в пламенной печи – 1 минута, а в соляной ванне – 30 секунд. Меньше всего времени уходит на закалку в свинцовой ванне ( от 6 секунд).

При погружении раскаленного изделия в закалочную среду образуется плёнка пара, через которую и происходит относительно медленное остывание (стадия пленочного кипения). В зависимости от того, какая жидкость используется для закаливания, температура достигает значения, при котором паровая пленка рвется и жидкость закипает на поверхности металла. Охлаждение значительно ускоряется. Этот процесс носит название пузырькового кипения. Когда металл уже достаточно охлаждается и жидкость уже не кипит, процесс охлаждения начинается замедляться. Происходит так называемый конвективный теплообмен.

Закалка металла, в зависимости от используемых охладителей, подразделяется на:

• закалку в одном охладителе. Нагретую деталь из углеродистой или легированной стали погружают в закалочную жидкость, до полного охлаждения закаливаемого металла;

• прерывистую закалку, которая производится в двух средах. Сначала деталь быстро оостужают в первичной среде (например воде), а затем в медленно охлаждающей жидкости (масло). Такой способ применим для изделий из высокоуглеродистых сталей;

• струйчатую закалку, при которой деталь обрызгивают струей воды. Паровая пленка при этом не образуется и, как правило, этот способ используют для закалки части изделия. Струйчатая закалка обеспечивает более глубокую степень прокаливаемости, чем обычная закалка в воде. Используется при закаливании индукторов на установках ТВЧ;

• ступенчатую закалку производят в закалочной среде, которая имеет температуру выше мартенситной точки для данной марки стали. При охлаждении и последующей выдержке в этой среде закаливаемый металл должен приобрести температуру закалочной ванны во всех точках сечения. После этого следует окончательное медленное охлаждение, в процессе которого и происходит непосредственно закалка;

• изотермическая закалка. Деталь выдерживают в закалочной среде до тех пор, пока не произойдет изотермическое превращение кристаллической решетки с образованием аустенита.

Скорость охлаждения зависит от размеров и формы закаливаемого изделия, теплопроводности стали и вида охлаждающей среды. При выборе последней нужно учитывать закаливаемость стали, которая в немалой степени зависит от легирующего состава и содержания углерода. Если углерода меньше 20%, то сталь нельзя подвергать закалке.

Высокие внутренние напряжения, которые могут возникнуть при больших скоростях охлаждения, приводят к деформации и повреждению структуры изделия. Внутренние напряжения возникают по двум причинам – разница температуры по сечению во время охлаждения и неодновременное протекание процесса фазовых превращений в различных участках закаливаемого изделия.

Охлаждающими средами могут служить различные жидкости (вода, растворы солей, щелочей), технические масла и даже расплавленный свинец. Вода слишком быстро охлаждает, поэтому высока вероятность возникновения внутренних напряжений. Минеральные масла дороги и легко воспламеняются. Одним из лучших охладителей является 8-12% раствор обычной пищевой соли (NaCl – хлорид натрия), или каустической соды (она же гидроксид натрия или едкий натр - NaOH).

^ Используемая литература:

В.Г. Микульский, В.Н.Куприянов, Г.П. сахаров, Г.И. Горчаков, Л.П. Орентлихер, В.М. Хрулев, В.В. Козлов, Р.Э. Рахимов. Строительные материалы. – М.: Издательство Ассоциации строительных вузов, 1996.

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

"Московский университет путей сообщения"

Смоленский филиал

Контрольная работа по дисциплине

“Технология конструкционных материалов”

Студент Садовниченко А.В.

специальность 270800 "Строительство"

группа СМГС-291

шифр 1120п/СТб-1513

преподаватель Ольховая Л.И.

Смоленск 2013