Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Часть №2.doc
Скачиваний:
540
Добавлен:
01.06.2015
Размер:
7.5 Mб
Скачать

14. Основные положения клеточной теории. Определение клетки. Неклеточные структуры организма, их морфофункциональная характеристика. Взаимоотношение клеток и неклеточных структур.

Современная клеточная теория включает такие положения;

1. Клетка является наименьшей единицей живого.

2. Клетки разных организмов имеют похожее строение.

3. Размножение клеток происходит путем деления материнской клетки (omnia cellula e cellula — каждая клетка — из клетки).

4. Многоклеточные организмы состоят из сложных ансамблей клеток и их производных.

Значение клеточной теории состоит в следующем:

1. Она явилась фундаментом для развития многих биологических дисциплин, прежде всего цитологии, гистологии, эмбриологии, физиологии, а также патологии.

2. Позволила понять механизмы онтогенеза — индивидуального развития организмов.

3. Явилась основой для материалистического понимания жизни, окружающего мира.

4. Явилась основой для объяснения эволюции организмов.

Клетка — это элементарная структурная единица организма, состоящая из ядра, цитоплазмы и ограниченная клеточной оболочкой, способная выполнять все функции, характерные живому: обмен веществ и энергии, размножение, рост, раздражимость, сократимость, хранение генетической информации и ее передачу.

Ультрамикроскопическое строение клетки животных организмов (схема).

1 — ядро; 2 — плазмолемма; 3 — микроворсинки; 4 — агранулярная эндоплазматическая сеть; 5 — гранулярная эндоплазматическая сеть; 6 — аппарат Гольджи; 7 — центриоль и микротрубочки клеточного центра; 8 — митохондрии; 9 — цитоплазматические пузырьки, 10 — лизосомы; 11 — микрофиламенты; 12 — рибосомы; 13 — выделение гранул секрета.

ВНЕКЛЕТОЧНЫЙ (ЭКСТРЛЦЕЛЛЮЛЯРНЫЙ) МАТРИКС (ВМ).

Внеклеточный матрикс — это вещество, находящееся между клетками. В соединительных тканях межклеточный матрикс является одним из тканевых элементов и называется межклеточным веществом, которое состоит из волокон (коллагеновые, эластические, ретикулярные) и основного, или аморфного вещества.

Аморфное вещество состоит из воды и различных макромолекула белков, углеводов (гликозаминогликаны и другие), комплекса белков с гликозаминогликанами (гликопротеины, протеогликаны), а также других веществ. В эпителиальной ткани внеклеточный матрикс слабо выражен, состоит в основном из аморфного вещества. Особой формой межклеточного матрикса в эпителиях являются базальные мембраны.

Одними из наиболее важных молекул внеклеточного матрикса, играющих роль в межклеточных взаимодействиях и во взаимодействиях "клетка — внеклеточный матрикс", являются ламинин, фибронектин и индоген/энтактин. Они взаимодействуют с рецепторами на поверхности клеток —("интегринами"), которые через внутриклеточные белки таллин, винкулин и а-актинин передают информацию на актиновые филаменты цитоскслета.

Поэтому механические, физические и химические изменения в ВМ ведут к изменению функций клеток. Существует и обратный путь передачи информации — от внутриклеточных структур на ВМ.

Функции внеклеточного матрикса:

1. Опорная.

2. Обеспечение обменных процессов и поступление в клетку веществ.

3. Регуляторная. Осуществляет регуляцию деятельности клеток.

4. Морфогенетическая, т.е. ВМ принимает участие в формировании тканевой архитектоники. Кроме того, ВМ участвует в гисто- и органогенезе, канцерогенезе и метастазировании опухолевых клеток, заживлении ран.

5. Транспортная. ВМ обеспечивает поступление к клетке необходимых регуляторных и питательных веществ.

15. Строение ядрышка. Ядрышко как производное хромосом. Химический состав, функция, характеристика компонентов, их взаимосвязь с интенсивностью синтеза РНК. Ядерная оболочка, строение и функции. Структурно-функциональнная характеристика отдельных компонентов.

Ядрышко

Практически во всех живых клетках эукариотических организмов в ядре видно одно или несколько обычно округлой формы телец величиной 1—5 мкм, сильно преломляющих свет, — это ядрышко, или нуклеола. К общим свойствам ядрышка относится способность хорошо окрашиваться различными красителями, особенно основными. Такая базофилия определяется тем, что ядрышки богаты РНК. Ядрышко — самая

плотная структура ядра — является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активностью синтеза РНК в интерфазе. Оно не является самостоятельной структурой или органеллой.

В настоящее время известно, что ядрышко — это место образования рибосомных РНК (рРНК) и рибосом, на которых происходит синтез полипептидных цепей в цитоплазме.

Образование ядрышек и их число связаны с активностью и числом определенных участков хромосом — ядрышковых организаторов, которые расположены большей частью в зонах вторичных перетяжек; количество ядрышек в клетках данного типа может изменяться за счет слияния ядрышек или за счет изменения числа хромосом с ядрышковыми организаторами. ДНК ядрышкового организатора представлена множественными (несколько сотен) копиями генов рРНК: на каждом из этих генов синтезируется высокомолекулярный предшественник РНК, который превращается в более короткие молекулы РНК, входящие в состав субъединиц рибосомы.

Схему участия ядрышек в синтезе цитоплазматических белков можно представить следующим образом: на ДНК ядрышкового организатора образуется предшественник рРНК, который в зоне ядрышка одевается белком, здесь происходит сборка рибонуклеопротеидных частиц — субъединиц рибосом; субъединицы, выходя из ядрышка в цитоплазму, организуются в рибосомы и участвуют в процессе синтеза белка.

Ядрышко неоднородно по своему строению: в световом микроскопе можно видеть его тонковолокнистую организацию. В электронном микроскопе выявляются два основных компонента: гранулярный и фибриллярный. Диаметр гранул около 15—20 нм, толщина фибрилл — 6—8 нм.

Фибриллярный компонент может быть сосредоточен в виде центральной части ядрышка, а гранулярный — по периферии. Часто гранулярный компонент образует нитчатые структуры — нуклеолонемы толщиной около 0,2 мкм.

Фибриллярный компонент ядрышек представляет собой рибонуклеопротеидные тяжи предшественников рибосом, а гранулы — созревающие субъединицы рибосом. В зоне фибрилл можно выявить участки ДНК ядрышковых организаторов. Они представлены так называемыми фибриллярными центрами, по периферии которых происходит синтез рРНК.

Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза рРНК в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается, ядрышки превращаются в плотные фибриллярные тельца базофильной природы.

Действие многих веществ (актиномицин, митомицин, ряд канцерогенных углеводородов, циклогексимид, гидрооксимочевина и др.) вызывает в клетках падение интенсивности ряда синтезов и в первую очередь активности ядрышек. При этом возникают изменения в структуре ядрышек: их сжатие, обособление фибриллярных и гранулярных зон, потеря гранулярного компонента, распад всей структуры. Эти изменения отражают степень повреждения ядрышковых структур, связанных главным образом с подавлением синтеза рРНК.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]