Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
электроника.doc
Скачиваний:
86
Добавлен:
31.05.2015
Размер:
1.75 Mб
Скачать

8.Полевые транзисторы мдп-типа, принцип работы, осн.Хар-ки

(со структурой металл-диэлектрик-полупроводник -МДП)

Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика.В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путем высокотемпературного окисления. На слой диэлектрика нанесен металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

9.Тиристоры

Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости. Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.

10. Однофазный однополупериодный выпрямитель

ВЫПРЯМИТЕЛЬ - это устройство, преобразующее переменный ток в постоянный.

Структурная схема выпрямителя

Выпрямители на основе диодов: однополупериодный, двухполупериодный (мостовой).

Диод – нелинейный пассивный полупроводниковый элемент с односторонней проводимостью.

Однополупериодная схема выпрямления:

Простейшая схема однополупериодного выпрямителя состоит только из одного выпрямляющего ток элемента (диода). На выходе — пульсирующий постоянный ток. На промышленных частотах (50—60 Гц) не имеет широкого применения, так как для питания аппаратуры требуются сглаживающие фильтры с большими величинами емкости и индуктивности, что приводит к увеличению габаритно-весовых характеристик выпрямителя.

11.Однофазный мостовой выпрямитель.

Диод – нелинейный пассивный полупроводниковый элемент с односторонней проводимостью.

Выпрямители преобразую переменный ток в постоянный.

Двухполупериодная схема (Мостовая):

Если параллельно нагрузке включить ёмкость, то сигнал примет более сглаженную форму, причём чем больше емкость, тем сигнал более постоянный.

13)Нулевой трехфазный выпрямитель. Данная схема содержит трехфазный трансформатор T и три диода (вентиля). Нагрузка включается между точкой соединения диодов и нулевым выводом трансформатора. На рисунке представлены графики зависимостей для токов и напряжений различных точек схемы выпрямления. На интервале времени [t1;t2] фаза “a” имеет наибольший потенциал по сравнению с другими фазами относительно нулевой точки трансформатора, поэтому диод VD1 находится в открытом состоянии и через него протекает ток. На нагрузке напряжение изменяется по закону огибающей фазы “a”. В момент t2 происходит перекоммутация с VD1 на VD2, т.к. потенциал фазы “b” становится наибольшим по отношению к нулевой точке. К нагрузке прикладывается фазное напряжение. На интервале времени [t2; t3] к первому диоду прикладывается линейное напряжение между фазами “b” и “a” и он находится в закрытом состоянии. В момент t3 прикладывается линейное напряжения Uca, так как происходит переключение вентилей (с VD2 на VD3). К недостатком этой схемы можно отнести: 1.Высокий уровень обратного напряжения (среднее напряжение – фазное, обратное – линейное), что не позволяет использовать данную схему при повышенных уровнях напряжения. 2.Ток во вторичной цепи трансформатора протекает в течение одной третьей части периода и имеет одностороннее направление, что увеличивает габаритные размеры трансформатора. Для исключения подмагничивания сердечника необходимо делать запас по намагниченности (уменьшать значение Bm), что приводит к дополнительному увеличению габаритов трансформатора. Иногда в сердечник трансформатора вводят воздушный зазор.3.Более низкие качественные показатели (K п , K0) по сравнению с двухполупериодной схемой выпрямления. 4,Индуктивность рассеяния трансформатора влияет на форму выпрямленного напряжения, что является ограничением по мощности. При этом снижается уровень выпрямленного напряжения и возрастают пульсации. 5.С точки зрения монтажа схемы – исключена возможность соединения вторичной цепи треугольником из - за нулевого вывода.

Достоинствами схемы выпрямления являются: 1.более высокие токи нагрузки по сравнению с двухтактной схемой (малые потери из-за того, что в работе участвует один вентиль в любой момент времени).2. с точки зрения монтажа – существует возможность размещения полупроводников на одном радиаторе.