Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
shpora.doc
Скачиваний:
55
Добавлен:
28.05.2015
Размер:
3.47 Mб
Скачать

5. Методика измерения уровней электромагнитного поля

Инструментальный контроль уровней ЭМП проводится с целью определения фактического состояния электромагнитной обстановки в районах размещения излучающих средств и служит средством оценки достоверности результатов расчета.

Измерения проводятся:

- на этапе предупредительного санитарного надзора - при приемке радиотехнического объекта (РТО) в эксплуатацию;

- на этапе текущего санитарного надзора - при изменении технических характеристик или режимов работы (мощности излучения антенно-фидерного тракта, направлений излучения и т.п.);

- при изменении ситуационных условий размещения станций (изменение расположения антенн, высот их установки, азимута или угла места максимального излучения, застройки прилегающих территорий);

- после проведения защитных мероприятий, направленных на снижение уровней ЭМП;

- в порядке плановых контрольных измерений (не реже одного раза в год).

4.1. Подготовка к проведению измерений

При подготовке к проведению измерений проводятся следующие работы:

- согласование с заинтересованными предприятиями и организациями цели, времени и условий проведения измерений;

- рекогносцировка района проведения измерений;

- выбор трасс (маршрутов) и площадок измерений, при этом, число трасс определяется рельефом местности, прилегающей к объекту, и целью измерений;

- организация связи для обеспечения взаимодействия между персоналом станции и группой измерений;

- обеспечение измерений дальности до точки измерений;

- определение необходимости использования средств индивидуальной защиты;

- подготовка необходимой измерительной аппаратуры.

4. 2. Выбор трасс (маршрутов) измерений

Число трасс определяется рельефом прилегающей местности и целью измерений. При установлении границ С33 выбирается несколько трасс, определяемых по конфигурации теоретических границ С33 и прилегающей селитебной зоны. При текущем санитарном надзоре, когда характеристики станции и условия ее эксплуатации остаются неизменными, измерения могут проводиться по одной характерной трассе или по границе С33.

При выборе трасс учитывается характер прилегающей местности (рельеф, растительный покров, застройка и пр.) в соответствии с которым, район, прилегающий к станции, разбивается на секторы. В каждом секторе выбирается радиальная, относительно станции, трасса. К трассе предъявляются требования:

- трасса должна быть открытой, а площадки, на которых намечается поведение измерений, должны иметь прямую видимость на антенну излучающего средства;

- вдоль трассы, в пределах главного лепестка ДН, не должно быть переизлучателей (металлических конструкций и сооружений, линий электропередачи и т.п.) и других затеняющих местных предметов;

- наклон трассы должен быть минимальным по сравнению с наклоном всех возможных трасс в данном секторе;

- трасса должна быть доступной для пешего передвижения или для автотранспорта;

- протяженность трассы определяется на основе расчетного удаления границ С33 и глубины зоны ограничения застройки (в 1,5 - 2 раза больше);

- точки (площадки) для проведения измерений следует выбирать с интервалом не более 25 м - при удалении до 200-300 м от излучающей антенны; 50- 100 м - при удалении от 200-300 м до 500-1000 м; 100 м и более - при удалении более 1000 м.

При выборе площадок для проведения измерений следует учесть, чтобы в радиусе до 10 м отсутствовали местные предметы и из любой ее точки обеспечивалась прямая видимость на излучающую антенну.

Измерения рекомендуется проводить в точках близких к границе зоны, как внутри зоны, так и вне ее. Интервал между точками измерений выбирается, исходя из местных условий.

4.3. Проведение измерений

Аппаратура, используемая для измерений уровней ЭМП, должна быть исправной и иметь действующее свидетельство о государственной поверке.

Подготовка аппаратуры к измерениям и сам процесс измерения производится в соответствии с инструкцией по эксплуатации применяемого прибора.

На этапе текущего санитарного надзора, когда технические характеристики РТО, условия и режим его эксплуатации остаются неизменными, измерения могут проводиться по одной характерной трассе или по границе санитарно-защитной зоны.

Измерительная антенна прибора ориентируется в пространстве в соответствии с поляризацией измеряемого сигнала.

Измерения производятся в центре площадки на высоте от 0.5 до 2 м. В этих пределах отыскивается высота, при которой отклонение показаний прибора наибольшее, на этой высоте плавно поворачивая измерительную антенну в горизонтальной, а при необходимости и в вертикальной плоскости, вновь последовательно добиваются максимального показания прибора. Максимальное значение измеряемой величины принимается за отсчет.

На каждой площадке необходимо проводить не менее трех независимых измерений. Результатом является среднее арифметическое значение этих измерений.

Измерения напряженности ноля каждого технического средства проводятся с помощью комплекта FSМ-8, включенного в режим измерения эффективных значений на несущих частотах видео- и звукового каналов.

Результирующее значение этих измерений находится согласно формулы 3.9.

Измерения могут производиться и другими приборами с аналогичными параметрами.

Для измерения дальности от основания опоры до точки измерения могут использоваться теодолит, мерная лента, план (карта) местности и другие доступные способы, обеспечивающие достаточную точность.

По результатам измерений составляется протокол. Результаты измерений должны вноситься в санитарный паспорт РТО и доводиться до сведения его администрации.

П3-50А - Измеритель напряженности поля промышленной частоты, качественное профессиональное оборудование, ПЗ-50 А параметры характеристики и техническое описание модели, заказать П3-50 А в компании СамараПрибор, купить Измеритель напряженности поля промышленной частоты с доставкой и гарантией, Приборы для измерения электромагнитных полей и излучений а так же другие измерительные приборы (КИПиА) лабораторное и испытательное оборудование в широком ассортименте по привлекательной цене.

Билет № 9

1. Система водоснабжения промышленных и селитебных зон

Водоснабжение оборотное – относительно быстрое повторное поступление использованной воды в технологические циклы или бытовые водопроводные сети после её очистки (в технологических циклах иногда без неё). Селитебная зона

Селитебная территория – часть планировочной структуры города; территория включающая: - жилые районы и микрорайоны; - общественно-торговые центры, улицы, проезды, магистрали; - объекты озеленения. В селитебной зоне могут размещаться отдельные коммунальные и промышленных объекты, не требующие устройства санитарно-защитных зон.

Системой технического водоснабжения называется комплекс сооружений, оборудования и трубопроводов, обеспечивающий забор природной воды из источника, её очистку, охлаждение; специальную очистку, транспортировку и подачу потребителям, а также сооружения, оборудования и установки, необходимые для приёма отработавшей воды и подготовки её для повторного использования.

В зависимости от изменения качества воды в процессе её использования схемы оборотного водоснабжения подразделяются на "чистые" циклы для воды, которая при использовании только нагревается; "грязные" циклы для воды, которая при использовании только загрязняется.

Очистку от механических примесей природных и сточных вод осуществляют в специальных сооружениях для осветления воды.В системах технического водоснабжения в качестве первой ступени осветления используются горизонтальные и радиальные отстойники, гидроциклоны, крупнозернистые фильтры, очищающие воду от частиц определённой крупности. При необходимости очистки воды и от мелкодисперсной взвеси используются в качестве второй ступени осветители и фильтры.

Существенно облегчают проблемы перехода на бессточное водопользование новые технологии в энергетике и, в частности, по очистки воды. К ним относятся внедрение противоточных фильтров, фильтров непрерывного действия, выпарных установок, беспродувочной системы охлаждения ТЭС с градирнями, переход с гидравлической на пневматическую систему золоудаления. Одним из прекращения сброса в водоёмы продувочных вод оборотных систем водоснабжения является питание системы водоподготовки водой из оборотной системы. В других случаях исключение сброса продувочных вод в водоёмы достигает стабилизацией оборотной воды подкислением или обработкой домовыми газами электростанций.

2. Связи состава, строения и свойств химических соединений с показателями токсического действия.

Токсичность органических соединений зависит от их строения и свойств. Соединения с нормальной углеродной цепью оказывают более выраженный токсический эффект по сравнению с разветвленными изомерами (пропиловый и бутиловый спирты оказывают более выраженное токсическое действие, чем изопропиловый и изобутиловый спирты) . Циклические ц/в с одной боковой цепью более токсичны, чем их изомеры с 2 и более боковыми цепями(диметилциклогексан действует слабее, чем этилциклогексан). Замыкание цепи углеродных атомов увеличивает силу действия вещества при их ингаляторном поступлении (пары циклопропана действуют сильнее, чем пропана). При введении в молекулу гидроксильной группы увеличивается растворимость и ослабляется сила действия соединения, поэтому спирты менее токсичны, чем соответствующие ц/в.Введение в молекулу галогена усиливает токсичность соединений, возможно появление новых свойств у данного соединения. Введение в молекулу нитро(-NO2), нитроза или аминогруппы (-NH2) редко изменяет токсические свойства соединении. Группы NO2 ,NO оказывают сосудорасширяющее и гипотензивное (падение давления)действие. Появление нитрозогруппы в соединении действует на ЦНС и вызывает метгемоглобинообразование. Особая токсичность присуща соединениям, содержащим аминогруппу( анилин). Введение в молекулу соединений кратных связей ведет к усилению их способности к химической реакции и повышает их токсичность.

3. Абсорбционный метод очистки газов, типы аппаратов и их конструктивные особенности, особенности и области применения.

По способу образования этой поверхности, что непосредственно связано с конструктивными особенностями абсорберов, их можно подразделить на четыре основные группы:

  1. Распыливающие

  2. Насадочные

  3. Пленочные

  4. Тарельчатые.

Распылевающие(безнасадочные) абсорберы Простейшее абсорбционное оборудование,обеспечивающее достаточную эффективность процесса, - это безнасадочные колонны. Они представляют собой цилиндрические или призматические сосуды, в которых орошающая жидкость разбрызгивается (обычно через серию форсунок) в направлении, противоположном потоку очищаемого газа, и в виде капель падает на дно абсорбера.

В распыливающих абсорберах контакт между фазами достигается распыливанием или разбрызгиванием жидкости в газовом потоке. Эти абсорберы подразделяют на следующие группы: 1) полые (форсуночные) 2) скоростные прямоточные; 3) механические распыливающие абсорберы. Эффективность абсорбции в безнасадочных колоннах зависит от однородности распределения капель жидкости по всей колонне. Для достижения хорошего разделения орошающей жидкости диаметр колонны, как правило, не должен превышать 2 – 3 м. Преимущество безнасадочных колонн заключается в малом сопротивлении потоку газа (обычно от 100 до 300 Па), простоте конструкции и меньших помехах пылевых частиц в очищаемом газе. Недостатки – малая эффективность процессов диффузии и массообмена.

Рис. 1. Устройство полых распыливающих абсорберов

а – вертикального с верхним распылом жидкости; 1 – корпуса; 2 – форсунки; 3 – коллектор орошающей жидкости; 4 – брызгоотбойник; 5 – газораспределительная решетка.

Полые распыливающие абсорберы отличаются простотой устройства, низкой стоимостью, малым гидравлическим сопротивлением, их можно применять для обработки сильно загрязненных газов.

К недостаткам полых распыливающих абсорберов, помимо их низкой эффективности, относятся также низкие скорости газа (до 1 м/с) во избежание уноса, неудовлетворительная их работа при малых плотностях орошения, достаточно высокий расход энергии на распыление жидкости.

Распыливающие полые абсорберы целесообразно применять для улавливания хорошо растворимых газов.

К этому типу аппаратов относится абсорбер Вентури (рис.2), основной частью которого является труба Вентури.

Рис. 2. Устройство бесфорсуночного абсорбера Вентури:

а – с эжекцией жидкости; 1 – конфузоры; 2 – горловины; 3 – диффузоры; 4 – сепараторы; 5 – циркуляционная труба; 6 – гидравлический затвор

К абсорбентам предъявляют определенные требования. Они должны иметь возможно большую абсорбционную емкость, высокую селективность, невысокое давление насыщенных паров и небольшую вязкость, быть термохимически устойчивыми, не проявлять коррозионную активность, легко регенерироваться, быть доступными и иметь низкую стоимость.

2. насадочные абсорберы

Эти абсорберы представляют собой колонны, заполненные насадкой – твердыми телами различной формы. В насадочной колонне 1 (рис. 4,а,б) насадка 3 укладывается на опорные решетки 4, имеющие отверстия или щели для прохождения газа и стока жидкости, которая достаточно равномерно орошает насадку 3 с помощью распределителя 2 и стекает по поверхности насадочных тел в виде тонкой пленки вниз.

Рис. 4. Насадочные абсорберы:

а – со сплошным слоем насадки: 1 – корпуса; 2 – распределители жидкости; 3 – насадка; 4 – опорные решетки; 5 – перераспределитель жидкости; 6 – гидравлические затворы; в – эмульгационная насадочная колонна; 1 – насадка; 2 – сетка, фиксирующая насадку; 3 – гидравлический затвор; 4 – опорная решетка; 5 – распределитель газа

Эффективность работы насадочных абсорберов существенно зависит от площади поверхности насадки и однородности ее орошения. Последнее определяется регулярностью подач орошающей жидкости и особенностями поверхности насадки. Керамические элементы орошаются более однородно, тогда как на пластиковых элементах при малой подаче жидкости не образуется сплошной пленки и, следовательно, в массообмене принимает участие лишь малая часть поверхности.

3.пленочныеабсорберы

В пленочных абсорберах поверхностью контакта фаз является поверхность жидкости, текущей по твердой, обычно вертикальной стенке. К этому виду аппаратов относятся: 1) трубчатые абсорберы; 2) абсорберы с плоскопараллельной или листовой насадкой; 3) абсорберы с восходящим движением пленки жидкости.

Трубчатый абсорбер

Рис. 12. Трубчатый пленочный абсорбер: 1 – корпус; 2 – трубки; 3 – перегородки

4. Тарельчатые абсорберы

Тарельчатые абсорберы обычно представляют собой вертикальные цилиндры – колонны, внутри которых на определенном расстоянии друг от друга по высоте колонны размещаются горизонтальные перегородки – тарелки. Тарелки служат для развития поверхности контакта фаз при направленном движении этих фаз (жидкость течет сверху вниз, а газ проходит снизу вверх) и многократном взаимодействии жидкости и газа.

Тарельчатые колонн со сливными устройствами. К аппаратам этого типа относятся колонны с колпачковыми, ситчатыми, клапанными и другими тарелками. Эти тарелки имеют специальные устройства для перетока жидкости с одной тарелки на другую – сливные трубки, карманы и др.

Ситчатые тарелки. Эти тарелки имеют большое число отверстий диаметром 2 – 8 мм, через которые проходит газ в слой жидкости на тарелке. Уровень жидкости на тарелке поддерживается переливным устройство .

Клапанные тарелки. Принцип действия этих тарелок (рис. 17,а) состоит в том, что клапан 2, свободно лежащий над отверстием в тарелке 1, с изменением расхода газа увеличивает подъем и соответственно площадь зазора между клапаном и плоскостью тарелки для прохода газа.

Пластинчатые тарелки. В отличие от рассмотренных выше тарелок эти тарелки работают при однонаправленном движении фаз .

Колонны с тарелками без сливных устройств. В тарелке без сливных устройств (рис. 23) газ и жидкость проходят через одни и те же отверстия или щели. При этом одновременно с взаимодействием фаз на тарелке происходит сток жидкости на нижерасположенную тарелку – «проваливание» жидкости.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]