Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диляра_3курс_после.docx
Скачиваний:
12
Добавлен:
25.05.2015
Размер:
228.55 Кб
Скачать

1.2. 2. «Зеленый» синтез: получение бионаночастиц с использованием экстрактов лекарственных растений

Растения способны восстанавливать ионы металлов как на своей поверхности, так и в различных органах и тканях, удаленных от места проникновения ионов. В связи с этим растения используются для извлечения ценных металлов. Подобный процесс в настоящее время называется фитодобычей. Накопленные металлы можно извлекать из убранных растений с использованием агломерационного и плавильного методов. Исследование процесса биоакумуляции металлов в растениях показало, что металлы, как правило, накапливаются в виде наночастиц. Например, растения Brassica juncea (листовая горчица) и Meticago sativa (люцерна посевная) накапливали наночастицы серебра размером 50 нм в количестве до 13.6% от собственного веса при выращивании на нитрате серебра в качестве субстрата [Hesse, 2002]. Икосаэдры золота размером 4 нм выявлялись в M. Sativa [Gershenzon, 2003], полусферические формы частиц меди размером 2 нм – в Iris pseudocorus (ирис всевдоаировый) [Manceau etal., 2008], выращенных на субстратах, содержащих соли соответствующих металлов [Hesse, 2002].

1.3. Физико-химические свойства бионаночастиц сереба

В последние годы интерес к бионаночастицам и материалам на их основе растёт лавинообразно в основном из-за их необычных физических характеристик, отличных от свойств соответствующих компактных материалов. Бионаночастицы серебра, как элемента, являются новым классом материала с существенными, по сравнению с макрочастицами, различиями в физико-химических характеристиках, оптических, электромагнитных и каталитических свойствах. В наноразмерном диапазоне практически любой материал проявляет уникальные свойства. Физические свойства наночастиц серебра отличаются от свойств макромолекулярного серебра (например, уменьшение размеров частицы приводит к уменьшению ее температуры плавления [Ling et al., 2009].

Коллоидное наносеребро – продукт, состоящий из наночастиц серебра, взвешенных в воде, содержащей стабилизатор коллоидной системы (Рисунок 1) [Limbach et al., 2007].

Рисунок 1. Электронная микрофотография коллоидных наночастиц серебра (по Limbach et al., 2007).

Свойства коллоидного раствора, в том числе и наночастиц серебра, определяются возможностью коагуляции и перекресталлизации, т. е. агрегативной устойчивостью, а также седиментационной устойчивостью и возможностью их окисления кислородом воздуха [Зимон с соавт., 2006].

Метод визуального наблюдения за системой может дать предварительные и общие закономерности относительной устойчивости исследуемой дисперсии. Может быть зафиксировано изменения окраски системы и/или образования осадка в ней. Для наночастиц серебра цвет систем от красного (желто-коричневого) меняется до серого и даже черного. Визуальный метод наблюдения может сыграть определяющую роль при исследовании седиментационной устойчивости [Сумм с соавт., 2000].

БНЧ серебра имеют преимущественно сферическую форму и распределены по размерам в диапазоне 2 ÷ 20 нм. Гидрозоли серебра, полученные восстановлением ионов металла экстрактами растений, практически не влияют на рост дрожжевых грибков. Коллоидные растворы серебра подавляют рост грибковых культур Penicillium sp. Противогрибковая активность коллоидных растворов возрастает с увеличением концентрации серебра в гидрозоле и близка к линейной. Максимальная способность подавлять рост Penicillium sp. наблюдается у коллоидных растворов серебра, которые были получены с использованием экстракта из листьев крапивы. Коллоидные растворы серебра полностью подавляют рост бактерий E.coli и Staphylococcus sp. [Mitsuoka et al., 1987].

Таким образом, используя экстракты растений в процессе приготовления коллоидных растворов серебра можно получить БНЧ серебра, способные подавлять рост бактерий и грибковых культур [Mitsuoka et al., 1987].