Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_33.docx
Скачиваний:
309
Добавлен:
23.05.2015
Размер:
390.25 Кб
Скачать

32. Теорема о циркуляции вектора напряженности электростатического поля

Теорема о циркуляции в электростатике: циркуляция вектора напряжённости электростатического поля по любому замкнутому контуру равна нулю.

33. Теореме Гаусса для электростатического поля в вакууме. Применение теоремы Гаусса для расчета напряженности поля бесконечной заряженной плоскости, поля конденсатора. теорема Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε0.

Пусть электрическое поле создаётся зарядом, равномерно распределённым по поверхности безграничной плоскости, с поверхностной плотностью s .

Из симметрии задачи следует, что поле повсюду направлено перпендикулярно к поверхности. Выясним, как меняется напряжённость поля по мере удаления от заряженной плоскости.

В качестве гауссовой поверхности удобно выбрать цилиндр. Ось цилиндра направим перпендикулярно плоскости, его основание расположим на расстоянии Хсимметрично по обе стороны от поверхности.

Вычислим поток вектора напряжённости через боковую поверхность и основания цилиндра. Как следует из рис. 2.8., поток вектора напряжённости через боковую поверхность цилиндра равен нулю, так как здесь повсюду векторы напряжённости «скользят» по поверхности и.

Тогда полный поток через замкнутую цилиндрическую поверхность можно записать как поток через два основания цилиндра.

(2.14)

Это величина, рассчитанная по определению потока.

Теперь воспользуемся теоремой Гаусса, заметив, что заряд q, «находящийся внутри гауссовой поверхности», в данном случае сосредоточен на площадкеS=Sосн, «вырезанной» цилиндром на бесконечной плоскости

(2.15)

Объединим результаты(2.15) и (2.14) в уравнение Гаусса:

Откуда следует

(2.16)

Вывод.Поле, созданное бесконечной равномерно заряженной плоскостью, однородно. Оно не меняется с расстоянием от заряженной поверхности ни по величине, ни по направлению.

Теперь рассмотрим еще один важный пример. Пусть поле создаётся двумя бесконечными плоскостями, заряженными разноименно, но с одинаковой по величине поверхностной плотностью заряда (рис. 2.9.). Это важная идеализация электростатики — плоский конденсатор. Каждая обкладка этого конденсатора создаёт однородное поле, напряжённость которого мы только что установили (2.16):

.

Рис. 2.9.

Силовые линии поля положительно заряженной плоскости направлены от неё, а отрицательной — к плоскости. При сложении этих полей, напряжённость результирующего поля вне конденсатора оказывается равной нулю, а внутри конденсатора, где эти поля совпадают по направлению, — поле удваивается:

.  

34. Теореме Гаусса. Применение теоремы Гаусса для расчета напряженности поля заряженной сферической поверхности и объемно заряженного шара.

 Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно споверхностной плотностью+σ. Т.к. заряд распределен равномернопо поверхности то поле, которое создавается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr2E = Q/ε0, откуда(3)  При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r'<R, то замкнутая поверхность не содержит внутри себя зарядов, значит внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).

 Поле объемно заряженного шара. Шар радиуса R с общим зарядом Q заряжен равномерно собъемной плотностьюρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r'<R охватывает заряд Q'=(4/3)πr'3ρ . Поэтому, используя теорему Гаусса, 4πr'2E=Q'/ε0=(4/3)πr'3ρ/ε0. Т.к. ρ=Q/(4/3πR3)) получаем(4)  Значит, напряженность поля вне равномерно заряженного шара описывается формулой (3), а внутри его изменяется линейно с расстоянием r' согласно зависимости (4). График зависимости Е от r для рассмотренного случая показан на рис. 5.

35. Напряженность поля бесконечной заряженной нити. Пусть— поверхностная плотность заряда на плоскости (рис. 3).

Рис. 3

В качестве поверхности площадью S выберем цилиндрическую поверхность, образующая которой перпендикулярна плоскости. Основания этого цилиндра расположены перпендикулярно линиям напряженности по обе стороны от плоскости. Так как образующие цилиндра параллельны линиям напряженности (= 90°, cos= 0), то поток через боковую поверхность цилиндра отсутствует, и полный поток через поверхность цилиндра равен сумме потоков через два основания: N = 2ES. Внутри цилиндра заключен заряд q =S, поэтому, согласно теореме Остроградского-Гаусса,

где = 1 (для вакуума), откуда следует, что напряженность поля равномерно заряженной бесконечной плоскости

Бесконечная равномерно заряженная нить

Пусть — линейная плотность заряда нити. Выделим участок нити длинойи окружим его цилиндрической поверхностью, расположенной так, что ось цилиндра совпадает с нитью (рис. 4).

Рис. 4

Линии напряженности электростатического поля, создаваемого нитью в сечении, перпендикулярном самой нити, направлены перпендикулярно боковой поверхности цилиндра, поэтому поток напряженности сквозь боковую поверхность , где R — радиус цилиндра. Через оба основания цилиндра поток напряженности равен нулю (= 90°, cos= 0). Тогда полный поток напряженности через выделенный цилиндр

Заряд, находящийся внутри этого цилиндра, .

Согласно теореме Остроградского—Гаусса, можно записать

Следовательно, модуль напряженности поля, создаваемого равномерно заряженной бесконечно длинной нитью на расстоянии R от нее,

36. Проводники в электрическом поле. Определение: Проводниками называют материалы, имеющие так называемые свободные заряды, которые могут перемещаться в объеме проводника под действием сколь угодно малого внешнего электрического поля.

Примечание: Типичным примером проводников являются металлы, атомы которых при формировании кристалла решетки отдают в коллективное использование 1-3 -в с внешних оболочек. Эти электроны, несмотря на то, что находятся в потенциальной яме объема проводника, весьма слабо связаны с атомом, то есть имеют большую подвижность (связь каждого электрона одновременно принадлежит всем атомам, что и обеспечивает их высокую подвижность).

Примечание: При помещении проводников во внешнее электрическое поле, свободные заряды начинают перемещаться в этом поле, если в объем проводника был дополнительно внесен некоторый заряд, то под действием этого внешнего поля, этот дополнительный заряд распределиться по поверхности проводника.

              

Примечание: Таким образом, при электризации проводника сообщенный ему дополнительный заряд оказывается, распределен в области поверхности проводника. Это распределение заряда будет происходить до тех пор, пока при распределении заряда потенциал поля в любой точке проводника не станет одинаковым.

                                                                       (18.1)

 

Отметим свойства заряженного проводника во внешнем электрическом поле.

1.      Электрический потенциал в любой точке объема равен потенциалу в любой точке поверхности проводника.

2.      Линии электрического поля перпендикулярны поверхности проводника.

3.      При помещении заряда проводника во внешнее электрическое поле внутри объема проводника будет наблюдаться движение зарядов до тех пор, пока суммарное поле внутри объема, обусловленное внешним полем, и поле дополнительного заряда  не станет равным нулю.

 

Примечание: Эквипотенциальные поверхности огибают проводник, помещенный во внешнее электрическое поле, а одна из них, потенциал которой равен потенциалу проводника, пересекает его.

 

Примечание: Для любого проводника существует только одна поверхность, потенциал которой равен потенциалу поверхности проводника.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]