Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
РАЗДЕЛ 3 Функция нескольких переменных.doc
Скачиваний:
27
Добавлен:
18.05.2015
Размер:
1.35 Mб
Скачать

1.2. Предел и непрерывность функции двух переменных

Для функции двух (и большего числа) переменных вводится понятие предела функции и непрерывность, аналогично случаю функции одной переменной.

Пусть функция определена в некоторой окрестности точки, кроме, может быть, самой этой точки.

Определение 1.3.Числоназываетсяпределом функцииприи(или, что то же самое, при), если для любогосуществуеттакое, что для всехи, и удовлетворяющих неравенствувыполняется неравенство. Записывают:

или

.

Из определения следует, что если предел существует, то он не зависит от пути, по которому стремится к(число таких направлений бесконечно). Определения бесконечно малых и бесконечно больших величин являющихся функциями двух переменных, аналогичны соответствующим определениям для функций одной переменной.

Предел функции двух переменных обладает свойствами, аналогичными свойствам предела функции одной переменной.

Определение 1.4.Функция(или) называетсянепрерывной в точке , если она:

  1. определена в этой точке и некоторой ее окрестности;

  2. имеет предел ;

  3. этот предел равен значению функции в точке, т.е.

или.

Функция, непрерывная в каждой точке некоторой области, называется непрерывной в этой области. Точки, в которых непрерывность нарушается (не выполняется хотя бы одно из условий непрерывности функции в точке), называютсяточками разрываэтой функции. Точки разрывамогут образовывать целыелинии разрыва. Так, например, функцияимеет линю разрыва.

Можно дать другое, равносильное приведенному выше, определение непрерывности функции в точке. Обозначим,. Значит,и. Величиныиназываютсяприращениями аргументови. Тогда. Величинаназываетсяполным приращением функциив точке.

Определение 1.5.Функцияназывается непрерывной в точке, если полное приращение функции в этой точке стремится к нулю, когда приращения ее аргументовистремится к нулю, т.е.

.

Пользуясь определением непрерывности и теоремами о пределах, можно доказать, что арифметические операции над непрерывными функциями и построение сложной функции из непрерывных функций приводит к непрерывным функциям – подобные теоремы имели для функций одной переменной.

1.3. Частные производные фнп

Рассмотрим линию пересечения поверхностис плоскостью, параллельной плоскости. Так как в этой плоскостисохраняет постоянное значение, товдоль кривойбудет меняться только в зависимости от изменения. Дадим независимой переменнойприращение, тогдаполучит приращение, которое называетсячастным приращениемпои обозначают через(на рисунке отрезок), так что

.

Аналогично, если сохраняет постоянное значение, аполучает приращение

параллельной плоскости .

Наконец, придав аргументу приращение, а аргументуприращение, получим дляновое приращение, которое называетсяполным приращениемфункциии определяется формулой

.

На рисунке изображено отрезком.

Надо отметить, что, вообще говоря, полное приращение не равно сумме частных приращений, т.е. .

Определение 1.6.Частной производной по от функцииназывается предел отношения частного приращенияпо к приращениюпри стремлениик нулю. Обозначается:. Тогда

.

Определение 1.7.Частной производной по от функцииназывается предел отношения частного приращенияпо к приращениюпри стремлениик нулю. Обозначается:. Тогда

.

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции находят по формулам и правилам вычисления производных функции одной переменной (при этом соответственноилисчитаются постоянной величиной).

Пример 1.2.Для данной функции требуется найти частные производныеи. Найти значения частных производных в точке:

.

Решение.Находим частные производные в общем виде:

,.

Находим значения частных производных в точке :

,.