Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка УТП и ИТ.doc
Скачиваний:
390
Добавлен:
13.05.2015
Размер:
5.63 Mб
Скачать

3 Приборы для контроля давления. Лабораторная работа №3

3.1 Манометры и реле давления на основе деформационных

чувствительных элементов

Контроль за протеканием большинства технологических процессов связан с измерением давления, разряжения или разности давлений газовых и жидких сред.

Широкое применение для контроля давления нашли приборы на базе деформационных чувствительных элементов. В этих приборах используется зависимость упругой деформации чувствительного элемента или развиваемой им силы от измеряемого давления.

3.1.1 Принцип действия и конструкции чувствительных элементов

Наиболее распространенные деформационные чувствительные элементы представлены на рисунке 3.1, к их числу относятся трубчатые пружины (а), сильфоны (б), плоские и гофрированные мембраны (в, г), мембранные коробки (д), вялые мембраны с жестким центром (е). Все они осуществляют преобразование давления Р в пропорциональное перемещение h рабочей точки.

Рисунок 3.1 - Деформационные чувствительные элементы

Полые одновитковые трубчатке пружины (рисунок 3.1а) имеют эллиптическое или плоскоовальное сечение. Один конец пружины, в который поступает измеряемое давление, закреплен неподвижно в держателе, второй (закрытый) может перемещаться. Под действием разности измеряемого внутреннего давления и внешнего атмосферного трубчатая пружина раскручивается и её свободный конец совершает перемещение в 1-3 мм. Для давлений до 5МПа трубчатые пружины изготовляют из латуни, бронзы, а для более высоких давлений - из легированных сталей и сплавов никеля.

Сильфонные и мембранные чувствительные элементы имеют большую эффективную площадь, что позволяет использовать их для измерения малых избыточных давлений и разрежения.

Сильфон (рисунок 3.1б) представляет собой тонкостенную цилиндрическую коробку с поперечными кольцевыми гофрами на боковой стенке. Жесткость сильфона зависит от материала, наружного и внутреннего диаметров, толщины стенки и формы гофр. Сильфоны бывают цельнотянутыми и сварными. Они получили широкое распространение в манометрах и дифманометрах.

Наиболее разнообразными по конструкции являются мембранные чувствительные элементы. На рисунке 3.1в плоская мембрана представляет собой гибкую тонкую пластину, закрепленную по окружности в корпусе прибора. Плоская мембрана имеет нелинейную статическую характеристику и малые перемещения рабочей точки. Поэтому её в основном применяют для преобразования давления в силу и используют в сочетании с пьезоэлектрическими и тензометрическими выходными преобразователями.

Для улучшения статической характеристики используют гофрированные мембраны и мембранные коробки (рисунок 3.1г, д).

В напоромерах и тягомерах применяются вялые мембраны (рисунок 3.1е), изготовленные из бензомаслостойкой прорезиненной ткани 1. В центре мембраны крепятся металлические пластины 2, в одну из которых упирается винтовая пружина 3, выполняющая функции упругого элемента.

В соответствии с используемым в приборах типом чувствительных элементов деформационные манометры разделяются на трубчато-пружинные, сильфонные и мембранные. Образцы каждого из этих типов представлены в данной лабораторной работе.

3.1.2 Электроконтактные манометры

Примером трубчато-пружинного прибора является злектроконтактный манометр ЭКМ. Этот прибор используется для измерения давления, сигнализации предельных отклонений давления в целях защиты и позиционного регулирования. Схема ЭКМ изображена на рисунке 3.2а.

Одновитковая трубчатая пружина 1 с одного конца приварена к держателю 2, прикрепленному к корпусу манометра. Нижняя часть держателя заканчивается штуцером 3, к которому присоединяется трубка, подводящая давление. Свободный конец пружины 1 припаян к пробке 4, которая шарнирно соединяется с поводком 5. При перемещении свободного конца пружины поводок поворачивает зубчатый сектор 6, вызывая поворот шестерни 7 и сидящей на одной оси с ней показывающей стрелки 8. Для использования в системах сигнализации и регулирования прибор снабжен двумя сигнальными контактами 9, связанными с передвижными стрелками 10 и 11. Третий контакт 12 связан с показывающей стрелкой. При выходе измеряемого давления за установленные задающими стрелками пределы контакт 12 замыкается с одним из контактов 10 или 11. Если давление находится в заданных пределах, то все контакты разомкнуты.

Манометры ЭКМ выпускаются с пределами измерений 0,1; 0,16; 0,25 и 0,4 МПа. Класс точности 1,5. Разрывная мощность контактов 10 ВА. На предприятиях общественного питания применяются в основном в схемах управления пищеварочными котлами.

3.1.3 Реле давления с минимальной зоной неоднозначности

Примером мембранных приборов является реле давления типа РД-4. Схема реле показана на рисунке 3.2б. Основными элементами реле является корпус 13, мембрана 14, уравновешивающая пружина 15, винт задатчика 16, толкатель 17, микропереключатель 18. Реле выпускается с пределами 0,05; 0,1; 0,10; 0,25 и 0,4 МПа. Дифференциал реле 0,005 – 0,02 МПа. Разрывная мощность контактов 500 ВА. Работу реле предлагается разобрать самостоятельно.

Рисунок 3.2 а) электроконтактный манометр; б) реле давления РД-4

3.1.4 Реле давления с настраиваемой зоной неоднозначности

Примером сильфонного прибора является реле давления типа Д-210.Реле предназначено для сигнализации предельных значений давления и позиционного регулирования. Схема реле изображена на рисунке 3.3.

Чувствительный элемент сильфон 1 под действием давления Р сжимается и через толкатель 2 нажимает на рычаг диапазона 3, стремясь повернуть его по часовой стрелке. Перемещению рычага противодействует пружина 4 задатчика диапазона. Предварительное сжатие этой пружины производится с помощью винта 5 задатчика диапазона по шкале 6 в соответствии с заданным значением давления. При повышении давления до заданного значения Рмахрычаг 3, сжимая пружину 4, поворачивается и нажимает на микропереключатель 7, подавая тем самым сигнал в систему автоматики.

При снижении давления обратное переключение микропереключателя 7 произойдет при меньшем значении давления Рмin. Разница Рмахмin, называемая дифференциалом реле, является величиной настраиваемой.

Настройка производится натяжением пружины 8 задатчика дифференциала с помощью винта 9 по шкале 10. Пружина 8 связана с рычагом дифф

6

10

ер

5

енц

9

иала 11.

Рисунок 3.3 – Реле давления Д-210

Незадолго до момента срабатывания реле на верхнем пределе Рмахрычаг 11 упирается в ограничитель 12 и после этого не оказывает воздействия на рычаг диапазона 3 при его дальнейшем движении вверх в пределах зазора. При снижении давления от Рмах рычаг 3 под действием разжимающейся пружины 4 поворачивается против часовой стрелки, и проходит зазор. Обратного переключения реле при этом не происходит благодаря собственному дифференциалу микропереключателя 7 . При дальнейшем снижении давления рычаг 3 будет через нижний выступ вилкообразного хвостовика воздействовать на рычаг 11, поворачивая его вниз и растягивая пружину 8. Пружина 8, таким образом, вступает в противодействие с пружиной 4, а усилие, создаваемое пружиной 8, определяет величину дифференциала релеР. После снижения давления на величинуР рычаг 3 освобождает микропереключатель и тот производит обратное переключение.

Реле Д-210 выпускается с пределами шкалы диапазона -0,04 +0,25 МПа и соответствующими им пределами шкалы дифференциала 0,030,16 МПа. Разрывная мощность контактов 150 ВА.