Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ekzamen_MEKhANIKA

.pdf
Скачиваний:
21
Добавлен:
15.04.2015
Размер:
4.37 Mб
Скачать

качели легко, однако, как только мы опять собьемся с ритма, толчки начнут тормозить качели и от такой работы будет мало проку.

Если частота со будет в точности равна w0, то амплитуда должна стать бесконечной, что, разумеется, невозможно. Мы ошиблись, потому что решали не совсем верное уравнение. Составляя уравнение (21.8), мы забыли о силе трения и о многих других силах. Поэтому амплитуда никогда не достигнет бесконечности; пожалуй, пружинка порвется гораздо раньше!

6.1. УРАВНЕНИЯ ГАРМОНИЧЕСКОГО ОСЦИЛЛЯТОРА

Рассмотрим уравнение гармонического осциллятора

которое представимо в виде системы уравнений первого порядка

Отметим важные свойства системы (6.5): 1) она имеет интеграл

2) система канонична с гамильтонианом g и, наконец, 3) она обратима по времени.

Таким образом, для интегрирования системы (6.5) целесообразно применять такие методы, которые бы учитывали названные свойства системы. Поскольку эти свойства тем или иным образом связаны с геометрией решений системы, то методы интегрирования, учитывающие хотя бы одно из них, обычно называют геометрическими.

Интересно заметить, что свойства 1)−3) характерны для многих дифференциальных уравнений небесной механики. В частности, уравнения кеплеровского движения (относительно центральной массы с гравитационным параметром ) представимы в виде

иони обратимы по времени.

9)Физический маятник осциллятор, представляющий собой твёрдое тело,

совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.

Физический маятник.

Физическим маятником называется твердое тело, закрепленное на неподвижной горизонтальной ocи (оси подвеса), не проходящей через центр тяжести, и совершающее колебания относительно этой оси под действием силы тяжести. В отличие от математического маятника массу такого тела нельзя считать точечной.

При небольших углах отклонения α (рис. 7.4) физический маятник так же совершает гармонические колебания. Будем считать, что вес физического маятника приложен к его центру тяжести в точке С. Силой, которая возвращает маятник в положение равновесия, в данном случае будет составляющая силы тяжести – сила F.

Знак минус в правой части означает то, что сила F направлена в сторону уменьшения угла α. С учетом малости угла α

Для вывода закона движения математического и физического маятников используем основное уравнение динамики вращательного движения

. Момент силы: определить в явном виде нельзя. С учетом всех величин, входящих в исходное дифференциальное уравнение колебаний физического маятника имеет вид:

(7.10)

(7.11)

Решение

этого

уравнения

Определим длину l математического маятника, при которой период его колебаний равен периоду колебаний физического маятника, т.е. или

 

.

 

 

Из

этого

соотношения

определяем

Данная формула определяет приведенную длину физического маятника, т.е. длину такого математического маятника, период колебаний которого равен периоду колебаний данного физического маятника.

10) ЗАТУХАЮЩИЕ КОЛЕБАНИЯ - колебания с постоянно убывающей со временем амплитудой.

Свободные колебания реальных систем всегда затухают. Затухание обусловлено в основном трением (механические системы) и сопротивлением ( в электромагнитных колебательных контурах).

Колебательная система называется линейной, если её свойства не меняются при колебаниях, то есть такие параметры, как сила тяжести, упругость пружины, сопротивление, емкость, индуктивность не зависят ни от смещения, ни от скорости, ни от ускорения колеблющейся величины. В дальнейшем мы будем рассматривать только линейные системы.

Уравнения затухающих колебаний

Получим дифференциальное уравнение свободных затухающих колебаний на примере реального пружинного маятника, совершающего колебания в среде с сопротивлением (простейший случай - трение о воздух). Пусть масса маятника m, коэффициент упругости пружины k, сила сопротивления, действующая на маятник, F = - bv, v - скорость маятника, b- коэффициент сопротивления среды, в которой находится маятник. Так как мы рассматриваем только линейные системы, b = const, k = const. x - смещение маятника от положения равновесия.

Второй закон Ньютона в нашем случае запишется так:

Это уравнение и есть дифференциальное уравнение свободных затухающих колебаний пружинного маятника. Его, однако, принято записывать в следующем, так называемом каноническом виде:

- коэффициент затухания, - собственная частота свободных

(незатухающих) колебаний пружинного маятника, то, что раньше мы обозначали просто .

Уравнение затухающих колебаний в таком (каноническом) виде описывает затухающие колебания всех линейных систем; конкретная колебательная система отличается только выражениями для и .

11) Вынужденные колебания. Резонанс.

Колебания, происходящие под действием внешней периодической силы, называются вынужденными колебаниями. Внешняя периодическая сила, называемая вынуждающей, сообщает колебательной системе дополнительную энергию, которая идет на восполнение энергетических потерь, происходящих из-за трения. Если вынуждающая сила изменяется во времени по закону синуса или косинуса, то вынужденные колебания будут гармоническими и незатухающими.

В отличие от свободных колебаний, когда система получает энергию лишь один раз (при выведении системы из состояния равновесия), в случае вынужденных колебаний система поглощает эту энергию от источника внешней периодической силы непрерывно. Эта энергия восполняет потери, расходуемые на преодоление трения, и потому полная энергия колебательной системы no-прежнему остается неизменной.

Частота вынужденных колебаний равна частоте вынуждающей силы. В случае, когда частота вынуждающей силы υ совпадает с собственной частотой колебательной системы υ0, происходит резкое возрастание амплитуды вынужденных колебаний резонанс. Резонанс возникает из-за того, что при υ = υ0 внешняя сила, действуя в такт со свободными колебаниями, все время сонаправлена со скоростью колеблющегося тела и совершает положительную работу: энергия колеблющегося тела увеличивается, и амплитуда его колебаний становится большой. График зависимости амплитуды вынужденных колебаний Ат от частоты вынуждающей силы υ представлен на рисунке, этот график называется резонансной кривой:

Явление резонанса играет большую роль в ряде природных, научных и производственных процессов. Например, необходимо учитывать явление резонанса при проектировании мостов, зданий и других сооружений, испытывающих вибрацию под нагрузкой, в противном случае при определенных условиях эти сооружения могут быть разрушены.

Колебания, совершающиеся под воздействием внешней периодической силы,

называются вынужденными.

В этом случае внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω0.

Если свободные колебания происходят на частоте ω0, которая определяется параметрами системы,

то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы.

После начала воздействия внешней силы на колебательную систему необходимо некоторое время t для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания τ свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса – вынужденные колебания на частоте ω и свободные колебания на собственной частотеω0. Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 2.5.1). Внешняя

сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 2.5.1) конец пружины перемещаться по закону

y = ym cos ωt.

где ym – амплитуда колебаний, ω – круговая частота.

Такой закон перемещения можно обеспечить с помощью шатунного механизма, преобразующего движение по окружности в поступательно-возвратное движение (рис. 2.5.1).

Рисунок 2.5.1.

Вынужденные колебания груза на пружине. Свободный конец пружины перемещается по закону y = ym cos ωt. l – длина недеформированной пружины, k – жесткость пружины

Если левый конец пружины смещен на расстояние y, а правый – на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины l равно:

l = x y = x ym cos ωt.

Второй закон Ньютона для тела массой m принимает вид :

ma = –k(x y) = –kx + kym cos ωt.

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части – это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое – внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой.

Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь

между ускорением тела и его координатой: Тогда уравнение вынужденных колебаний запишется в виде

(**)

где – собственная круговая частота свободных колебаний, ω – циклическая частота вынуждающей силы. В случае вынужденных колебаний груза на пружине (рис. 2.5.1) величина A определяется выражением:

Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2) уравнение вынужденных колебаний (**) содержит две частоты – частоту ω0 свободных колебаний и частоту ω вынуждающей силы.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону

x (t) = xmcos (ωt + θ).

Амплитуда вынужденных колебаний xm и начальная фаза θ зависят от соотношения частот ω0 и ω и от амплитуды <m>m>ym внешней силы.

На очень низких частотах, когда ω << ω0, движение тела массой m, прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x (t) = y (t), и пружина остается

практически недеформированной. Внешняя сила приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при ω << ω0 стремится к нулю.

Если частота ω внешней силы приближается к собственной частоте ω0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом. Зависимость

амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой илирезонансной кривой (рис. 2.5.2).

При резонансе амплитуда xm колебания груза может во много раз превосходить

амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше

добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис. 2.5.2.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Рисунок 2.5.2.

Резонансные кривые при различных уровнях затухания: 1 – колебательная системабез трения; при резонансе

амплитуда xm вынужденных колебаний неограниченно возрастает; 2, 3, 4 – реальные резонансные кривые для колебательных систем с различной

добротностью: Q2 > Q3 > Q4. На низких частотах (ω << ω0) xm ym. На высоких частотах (ω >> ω0) xm → 0

Вынужденные колебания – это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными, а процесс незатухающих колебаний в таких системах – автоколебаниями. В автоколебательной системе можно выделить три характерных элемента – колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 2.5.3 изображена схема взаимодействия различных элементов автоколебательной системы.

Рисунок 2.5.3.

Функциональная схема автоколебательной системы

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 2.5.4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника

закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменена пружиной, а маятник – балансиром – маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Рисунок 2.5.4. Часовой механизм с маятником

12) пругие волны (звуковые волны) — волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил.

Классификация

Взависимости от частоты различают инфразвуковые, звуковые и ультразвуковые упругие волны.

Вжидких и газообразных средах может распространяться только один тип упругих волн — продольные волны.

Вволне этого типа движение частиц осуществляется в направлении распространения волны.

Втвёрдых телах существуют касательные напряжения, что приводит к существованию других типов волн, в которых движение частиц осуществляется по более сложным траекториям.

Упругие волны, распространяющиеся в земной коре, называют сейсмическими волнами.

Упругие волны в твёрдых телах

Наиболее распространёнными типами упругих волн в твёрдых телах являются:

продольные волны — волны с колебанием частиц вдоль направления распространения волны;

поперечные волны — волны с колебанием частиц перпендикулярно направлению распространения волны;

поверхностные волны (например волны Рэлея — волны с колебанием частиц по эллипсам вдоль поверхности тела;

волны Лэмба — волны в тонких пластинах;

изгибные волны — распространение колебаний деформации изгиба в стержнях или пластинах, длина волны которых много больше толщины стержня или пластины.

Волны в упругих средах

Среда называется УПРУГОЙ, или ЛИНЕЙНОЙ, если её деформация пропорциональна приложенной силе (аналогично закону Гука).

например: слабый удар молоточка по металлу. Деформации, возникающие в металле (смещения), будут пропорциональны приложенной силе (если, конечно, бить не очень сильно).

При достаточно малых деформациях практически все тела (в том числе жидкие и газообразные; в этом случае обычно говорят не "тело", а "среда") являются упругими.

УПРУГИМИ, или МЕХАНИЧЕСКИМИ волнами называются механические возмущения (деформации), распространяющиеся в упругих средах.

Тело, вызывающее эти возмущения при своём воздействии на среду, называется ИСТОЧНИКОМ волн.

Упругие волны часто называют ЗВУКОВЫМИ волнами, или просто ЗВУКОМ, так как человеческое ухо воспринимает большинство таких волн как звук (даже если и не воспринимает, все равно говорят о звуковых волнах).

Распространение упругих волн не связано с переносом вещества; частички среды колеблются около положения равновесия. (Когда вы слышите звук, вы не ощущаете ветер.)

Волны бывают продольные, поперечные и поверхностные.

Волна называется ПРОДОЛЬНОЙ, если частицы среды колеблются в направлении распространения волны. Например, обычный звук в воздухе.

Волна называется ПОПЕРЕЧНОЙ, если частицы среды (или тела) колеблются перпендикулярно распространению волны. Например, волны, бегущие по струнам.

ПОВЕРХНОСТНЫЕ волны наблюдаются на свободной поверхности жидкостей. Частицы жидкости при распространении такой волны колеблются как вдоль, так и поперёк направлению распространения волны.

Волны бывают бегущие и стоячие.

БЕГУЩИМИ называются волны, переносящие энергию в пространстве. При своём распространении такая волна вовлекает в колебания всё новые и новые частицы среды, которые при этом получают энергию от волны.

СТОЯЧИЕ волны образуются в результате суперпозиции двух одинаковых бегущих (друг другу навстречу) волн. Колеблющиеся частицы среды, разумеется, обладают энергией, но переноса энергии не происходит. Два одинаковых встречных потока энергии в сумме дают ноль.

В случае реальной среды наблюдается поглощение волн (так называется затухание волны в пространстве); механическая энергия колеблющихся частиц переходит во внутреннюю, тепловую энергию среды. Далее мы будем вести речь только о волнах, распространяющихся без поглощения, то есть в идеальных средах.

ЛУЧ - линия, касательная к которой в каждой точке совпадает с направлением распространения волны.

ГАРМОНИЧЕСКАЯ, или СИНУСОИДАЛЬНАЯ ВОЛНА - волна, при распространении которой частицы среды совершают гармонические (синусоидальные) колебания.

Частота этих колебаний есть ЧАСТОТА ВОЛНЫ.

ВОЛНОВАЯ ПОВЕРХНОСТЬ или ВОЛНОВОЙ ФРОНТ - геометрическое место точек, в которых фаза колебаний частиц среды имеет одно и то же значение.

Волна называется ПЛОСКОЙ, если её волновые поверхности есть параллельные плоскости. Например, волны от плоского протяженного источника.

Волна называется СФЕРИЧЕСКОЙ, если её волновые поверхности есть концентрические сферы. Например, волны от точечного источника.

УРАВНЕНИЕМ ВОЛНЫ называется зависимость колеблющейся величины от координат и времени. Например, при колебаниях струны - это зависимость от координат и времени смещения какой-либо точки струны от положения равновесия; при колебаниях воздуха - зависимость давления воздуха от координат и времени.

уравнение плоской волны

Уравнение плоской волны

равнение плоской волны

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]