Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
диплом2.docx
Скачиваний:
77
Добавлен:
11.04.2015
Размер:
213.11 Кб
Скачать

1.2 Требования к мультисервисным сетям

Мультисервисные сети позволяют операторам расширить свои сетевые магистрали в направлении предоставления новых сервисов, предлагая дополнительные услуги для широкого круга корпоративных клиентов. Под мультисервисными сетями мы понимаем предоставление разнородных телекоммуникационных услуг по единой инфраструктуре передачи данных.

Когда речь заходит о реализации мультисервисных сетей, обычно подлежат рассмотрению четыре технических вопроса: пропускная способность, задержка, рассинхронизация, управление.

Растущий спрос на новые виды широкополосных передач данных, потребность в доступе к Интернету в условиях жесткой конкуренции вынуждает провайдеров расширять диапазон услуг, снижать расходы на инфраструктуру и прочее. Таким образом, нужна платформа, способная предложить комплексное решение, позволяющее предоставлять широкий спектр услуг: АТМ, Frame Relay, Internet, IP, передачи голоса и видеосигнала с гарантированным качеством обслуживания (QoS) и максимальной готовностью. При этом клиент становится абонентом недорогих и надежных служб от одного поставщика, получает высокоскоростной доступ к Интернету, имеет возможность вносить изменения в набор услуг и служб и оплачивает только один счет.

Что касается проектирования сети, то мультисервисные сети требуют совершенно иного подхода. Доставка видео и голоса должна осуществляться в реальном времени — с необходимостью приоритетности в случае перегрузок транспортной сети. Однако сетевая индустрия никогда не ориентировалась на сети реального времени, данные доставлялись в соответствии с возможностями сети в конкретный промежуток времени.

 

1.3 Архитектура мультисервисных сетей

Существует множество вариантов построения мультисервисной сети. Один из них предусматривает построение гомогенной инфраструктуры — это или полностью пакетная, не ориентированная на соединения сеть (типа разделяемых и коммутируемых ЛВС, пакетных региональных сетей связи), или ориентируемые на соединения сети (типа АТМ). Ни одна из перечисленных архитектур в отдельности практически не способна удовлетворить пользователей при построении мультисервисной сети из-за различий в экономических и функциональных требованиях для локальных вычислительных сетей и региональных сетей связи. Мультисервисная сеть, простирающаяся на большие расстояния, должна иметь ядро — региональную сеть связи, — окруженное периферийными локальными вычислительными сетями.

В общем случае, периферийные локальные сети используют различные технологии. Одна сеть может быть основана на коммутируемой Ethernet-технологии (без устройств маршрутизации), другая — на маршрутизируемых сегментах Ethernet-сети, и третья — на технологии АТМ ЛВС.

Ядро сети может быть построено на основе технологий frame relay, асинхронной системы передачи или Internet.

В то время как проблемы с QoS в локальной вычислительной сети можно решить радикальным расширением полосы пропускания, с экономической точки зрения в региональной сети связи это невыполнимо. Поэтому региональные сети связи проектируются с учетом оптимизации использования ресурса для определенного типа трафика.

Сети, основанные на передаче пакетов, типа большей части Internet, обеспечивают хорошее качество потокового, не чувствительного к задержкам трафика обслуживания, но не подходят для трафика с высокими требованиями к полосе пропускания, задержке и «дрожанию» частоты. Ориентированные на соединения сети типа асинхронной системы передачи, наоборот, обеспечивают хорошее качество сервиса для трафика с высокими требованиями к полосе пропускания, задержке и «дрожанию» частоты.

Для магистралей сети наилучшим решением, обеспечивающим масштабируемую пропускную способность и гарантированное качество услуг QoS, в настоящее время является технология ATM. Многофункциональные коммутаторы АТМ, предоставляя различные интерфейсы для подключения оконечного оборудования, обеспечивают взаимодействие через единую инфраструктуру. С их помощью крупные предприятия также могут объединить трафик различных сетей в единой магистрали, наделив при этом свою сетевую инфраструктуру новыми качествами, которые, скорее всего, потребуются уже в ближайшем будущем.

Большое внимание привлекает сегодня еще одна новая технология — телефония на базе IP (известная также как «голос по IP» — Voice over IP, VOIP). Для коммерческих предприятий самым значимым преимуществом передачи голоса по IP является сокращение расходов: имеющаяся сеть передачи данных может передавать голосовой трафик вместо платной общедоступной телефонной сети. Многие крупные корпорации уже имеют обширные сети на базе IP.

ITU разработал общие рекомендации относительно «передачи нетелефонных сигналов», включающих и другие рекомендации с целью объединения спецификаций для аудио, видео и данных, управления вызовами и других функций.

QoS ни в коем случае нельзя считать единственным условием эффективной поддержки межпользовательской связи в реальном времени. Наличие QoS в сети обеспечивает доставку аудио-, видеоинформации и данных. Необходимо, однако, обеспечить также совместимость с существующими инфраструктурами для передачи голоса и видеоинформации — с коммутируемыми сетями общего доступа учрежденческими АТС (PBX).

В будущем сети для передачи данных сольются с телефонными сетями и различия между ними исчезнут. Это слияние произойдет, когда ATM действительно станет повсеместным. При этом АТС ничем не будет отличаться от сетевого коммутатора ATM. Подавляющее большинство коммутаторов сможет обрабатывать все типы данных и коммутировать любой трафик. Сегодня поставщики и пользователи готовятся к этому будущему, и очертания сети нового типа со временем будут становиться все более четкими.

  1. Маршрутизация в мультисервисной сети

Маршрутизация - это один из важнейших механизмов передачи пакетов по компьютерным сетям. Маршрутизация решает две задачи: борьба с перегрузками узлов сети и поиск кратчайших путей для передачи пакетов. Основные факторы, влияющие на выбор маршрутизатором пути - это неисправности (когда узел или канал связи выходят из строя) и перегрузки (когда какой-либо участок сети оказывается перегруженным и желательно перенаправление пакетов в обход).

Существуют два больших класса алгоритмов маршрутизации: статические и динамические. Статические алгоритмы принимают решение только на основе данных, которые не меняются с течением времени. Динамические алгоритмы постоянно обновляют свои локальные структуры для оптимизации выбора маршрутов.

2.1 Общие понятия и виды методов маршрутизации

Основными формами каждого маршрутизатора, реализуемым в соответствии с протоколами маршрутизации, являются:

  1. Определение наилучших маршрутов до возможных пунктов назначения и сохранение полученной информации в таблице маршрутизации;

  2. Передача пакетов по оптимальным путям, выбранным из таблицы маршрутизации на основе адресов получателей.

Современные протоколы маршрутизации предусматривают автоматическое формирование таблиц маршрутизации и поддержание их виртуального состояния на основе взаимодействия маршрутизаторов друг с другом. На каждом маршрутизаторе функции определяют программы опроса и прослушивания, с помощью которых он обменивается информацией с другими маршрутизаторами. Полученная информация используется для построения и обновления таблицы маршрутизации.

Таблица маршрутизации, иногда называемая базой банных маршрутизации, включает набор оптимальных путей, используемых маршрутизатором при передаче пакетов в данный момент времени. Каждая строка этой таблицы содержит, по крайней мере, следующею информацию:

  1. Сетевой адрес получателя;

  2. Адрес следующего маршрутизатора, пересылка к которому соответствует оптимальному пути до пункта назначения;

  3. Характеристику пути, например, пропускная способность канала связи и отметку времени, когда эта характеристика была определена;

  4. Информацию о способе пересылки, например, номер выходного порта.

В одной строке таблицы могут храниться данные о нескольких возможных следующих транзитных маршрутизаторах, задающих различные критерии оптимальности пути. Способ выбора транзитного маршрутизатора зависит от используемой схемы протокола маршрутизации.

Определение оптимальности путей при формировании и обновлении таблицы маршрутизации может производиться в соответствии с такими критериями или их комбинациями, как:

  1. Длина маршрута, измеренная количеством маршрутизаторов, через которое необходимо пройти до пункта назначения;

  2. Пропускная способность канала связи;

  3. Прогнозируемое суммарное время пересылки;

  4. Стоимость канала связи.

При наличии таблицы маршрутизации функцию передачи пакетов по оптимальным путям маршрутизатор реализует достаточно просто. Для отправки пакета через маршрутизатор узел локальной сети помещает в заголовок пакета на сетевом уровне модуля OSI адрес действительного получателя, а на канальном уровне – MAC- адрес маршрутизатора. После получения очередного пакета маршрутизатор выполняет следующие действия:

  1. Считывает из заголовка пакета, соответствующий сетевому уровню модели OSI, адрес назначения, т.е. сетевой адрес получателя;

  2. По таблице маршрутизации определяется адрес следующего транзитного маршрутизатора, пересылка к которому соответствует оптимальному пути до пункта назначения;

  3. Заменяет в заголовке пакета, соответствующий канальному уровню модели OSI, свой МАС - адрес на МАС- адрес выбранного транзитного маршрутизатора;

  4. Отсылает пакет выбранному транзитному маршрутизатору.

По мере того, как пакет передвигается через сеть, физический адрес (МАС- адрес) его получателя меняется, но логический адрес пункта назначения, соответствующий сетевому уровню модели OSI, остается без изменений.

В следующей таблице показан пример таблицы IP-маршрутизации. Этот пример соответствует компьютеру с Windows Server 2003, Standard Edition, имеющему одну сетевую плату с пропускной способностью до 10 Мбит/с и следующую конфигурацию:

  • IP-адрес: 10.0.0.169

    Описание

    Сетевой адрес

    Маска сети

    Адрес шлюза

    Интерфейс

    Метрика

    Маршрут по умолчанию

    0.0.0.0

    0.0.0.0

    10.0.0.1

    10.0.0.169

    30

    Сетевой адрес замыкания на себя

    127.0.0.0

    255.0.0.0

    127.0.0.1

    127.0.0.1

    1

    Локальная сеть

    10.0.0.0

    255.0.0.0

    10.0.0.169

    10.0.0.169

    30

    Локальный IP-адрес

    10.0.0.169

    255.255.255.255

    127.0.0.1

    127.0.0.1

    30

    Адреса многоадресной рассылки

    224.0.0.0

    240.0.0.0

    10.0.0.169

    10.0.0.169

    30

    Адрес ограниченной широковещательной рассылки

    255.255.255.255

    255.255.255.255

    10.0.0.169

    10.0.0.169

    1

  • Маска подсети: 255.0.0.0

  • Основной шлюз: 10.0.0.1