Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по физике 3 семестр.doc
Скачиваний:
100
Добавлен:
30.03.2015
Размер:
1.42 Mб
Скачать

2.2. Элементы квантовой механики Гипотеза де Бройля

В 1924 году Луи де Бройль выдвинул гипотезу, что корпускулярно-волновой дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение. По предположению де Бройля движение электрона или какой-либо другой частицы связано с волновым процессом, длина волны которого

, (22)

а частота . (23)

Данная гипотеза подтверждена экспериментально и в настоящее время считается установленным фактом.

Соотношение неопределенностей

Своеобразие свойств микрочастиц проявляется в том, что не для всех динамических переменных, характеризующих состояние микрочастицы, получаются при измерениях определенные значения. Так, например, электрон (и любая другая микрочастица) не может иметь одновременно точных значений координаты x и компоненты импульса рx. Неопределенности значений x и рх удовлетворяют соотношению

. (24)

Из этого следует, что чем меньше неопределенность одной из переменных (х или Px), тем больше неопределенность другой.

Соотношение, аналогичное (24) имеет место для y и рy, для z и pz, а также для ряда других пар величин, называемых канонически сопряженными.

Например, энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенностей

. (25)

Это соотношение означает, что определение энергии с точностью Е должно занять интервал времени t, не меньший, чем определяемый соотношением (25).

Уравнение Шредингера. Волновая функция

Состояние микрочастицы в квантовой механике характеризуется так называемой волновой функцией, обозначаемой буквой  (пси). Вид этой функции получается из решения уравнения Шредингера, которое выглядит следующим образом:

. (26)

Здесь m - масса частицы, U – ее потенциальная энергия, i – мнимая единица,

 – оператор Лапласа,  = (x,y,z,t) – функция координат и времени.

. (27)

Если силовое поле, в котором движется частица, стационарно, т.е. U не зависит явно от времени, то уравнение (26) переходит в более простое уравнение Шредингера для стационарных состояний:

. (28)

Здесь  = (x,y,z) – функция координат.

Решения данного уравнения и рассматривает квантовая механика.

Правильную интерпретацию смысла волновой функции дал М. Борн в 1926 г. Согласно Борну квадрат модуля волновой функции дает плотность вероятности нахождения частицы в соответствующем месте пространства.

. (29)

В соответствии с этим для волновой функции должно выполняться условие нормировки

. (30)

В соответствии со своим смыслом волновая функция должна быть однозначной, конечной, непрерывной и иметь непрерывную и конечную производную. Совокупность этих требований носит название стандартных условий.

Уравнение Шредингера имеет решения, удовлетворяющие стандартным условиям, лишь при некоторых избранных значениях параметра Е (т.е. энергии). Эти избранные значения называются собственными значениями энергии. Решения, соответствующие собственным значениям Е, называются собственными функциями частицы. Совокупность собственных значений называется энергетическим спектром. Он может быть дискретным или сплошным. В случае дискретного спектра собственные значения и собственные функции можно пронумеровать:

E1, E2, ... En, ...; (31)

1, 2, ... n, ... .

Нахождение собственных значений энергии и собственных функций частиц является основной задачей квантовой механики.