Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen2_-_kopia.docx
Скачиваний:
35
Добавлен:
29.03.2015
Размер:
737.53 Кб
Скачать

48. Свободные затухающие колебания. Характеристики затухания: коэффициент затухания, время, релаксация, декремент затухания, добротность колебательной системы.

Затуханием колебаний называется постепенное ослабление колебаний с течением времени, обусловленное потерей энергии колебательной системой. Закон затухания колебаний зависит от свойств колебательной системы. Система называется линейной, если параметры, характеризующие существенные в рассматриваемом процессе физические свойства системы, не изменяются в ходе процесса. Свободные затухающие колебания линейной системы описываются уравнением:

где - коэффициент затухания, - собственная частота системы, т.е. частота, с которой совершались бы колебания в отсутствии затухания. Выражение коэффициента затухания через параметры системы зависит от вида колебательной системы.

Для решения уравнения

производится подстановка .Эта подстановка приводит к характеристическому уравнению:

которое имеет два корня:

При не слишком большом затухании (при) подкоренное выражение будет отрицательным. Если его представить в видегде- вещественная положительная величина, называемая циклической частотой затухающих колебаний и равная

то корни уравнения запишутся в виде:

Общим решением уравнения будет функция:

которую можно представить в виде:

Здесьи- произвольные постоянные.

движение системы можно условно рассматривать как гармоническое колебание частоты w с амплитудой, изменяющейся по закону:

Период затухающих колебаний определяется формулой:

При незначительном затухании период колебаний практически равен

Такое отношение амплитуд называется декрементом затухания, а его натуральный логарифм - логарифмическим декрементом затухания:

Логарифмический декремент затухания обратен по величине числу колебаний, совершаемых за то время, за которое амплитуда уменьшается в «e» раз.

Помимо рассмотренных величин для характеристики колебательной системы употребляется величина

называемаядобротностью колебательной системы. Добротность пропорциональна числу колебаний, совершаемых системой за то время, за которое амплитуда колебаний уменьшается в «e» раз.

время релаксации — время, за которое амплитуда колебаний уменьшится в e раз.

49. Электрический заряд. Закон Кулона. Электростатическое поле (эсп). Напряженность эсп. Принцип суперпозиции. Силовые линии эсп.

Объяснение электризации было осуществлено в 1881 году Гельмгольцем, который выдвинул гипотезу о существовании электрически заряженных элементарных частиц. Впоследствии эта гипотеза подтвердилась открытием в 1897 году Томсоном электрона. Электрон имеет электрический заряд равный Кл., который называется элементарным. Величина любого заряда q, кратна элементарному, т.е. q=ne (где n – целое число). Тела, в которых электрические заряды могут свободно перемещаться, называются проводниками, например, все металлы являются хорошими проводниками. Тела, в которых возможность перемещения зарядов весьма ограничена, называются диэлектриками или изоляторами, заряды в таких телах называются связанными или поляризационными. Промежуточные положение занимают полупроводники. Их электропроводность в значительной мере зависит от внешних условий, главным образом от температуры.

В изолированной системе алгебраическая сумма электрических зарядов остается постоянной. Это утверждение носит название закона сохранения заряда. Наличие у тела электрического заряда проявляется в том, что такое тело взаимодействует с другими заряженными телами. Тела, несущие заряды одинакового знака, отталкиваются друг от друга. Тела, заряженные разноименно, притягиваются друг к другу. Закон, которому подчиняются силы взаимодействия так называемых точечных зарядов, был установлен в 1775 году Кулоном, согласно которому сила взаимодействия двух неподвижных точечных зарядов прямопропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния r между ними

(13.1)

где - электрическая постоянная,- относительная диэлектрическая проницаемость.

В случае одноименных зарядов сила оказывается положительной, (что соответствует отталкиванию между зарядами). В случае разноименных зарядов сила отрицательна, что соответствует притягиванию зарядов.

Совокупность двух равных по величине разноименных точечных зарядов q, расположенных на некотором расстоянии друг от друга, малом по сравнению с расстоянием до рассматриваемой точки поля называется электрическим диполем.(рис.13.1)

Произведение называется моментом диполя. Прямая линия, соединяющая заряды называется осью диполя. Обычно момент диполя считается направленным по оси диполя в сторону положительного заряда.

Взаимодействие между зарядами осуществляется через электрическое поле. Электрическое поле покоящихся зарядов называется электростатическим. Электростатическое поле отдельного заряда можно обнаружить, если внести в это поле другой заряд, на который в соответствии с законом Кулона будет действовать определенная сила. Внесем в электрическое поле, созданное зарядом q, точечный положительный заряд, называемый пробным . На этот заряд, по закону Кулона, будет действовать сила

Если в одну и туже точку помещать разные пробные заряды ,и т.д., то на них будут действовать различные силы, пропорциональные этим зарядам. Отношениедля всех зарядов, вносимых в поле, будет одинаковым и будет зависеть лишь от q и r, определяющих электрическое поле в данной точке. Эта величина является силовой характеристикой электрического поля и называется напряженностью (E). Итак

,

т.е. напряженность данной точки электрического поля это сила действующая на единичный положительный заряд, помещенный в эту точку.

Учитывая закон Кулона (13.1) нетрудно получить выражение для напряженности поля создаваемого точечным зарядом q

или в векторной форме

(13.2)

За единицу напряженности принимается напряженность в такой точке поля, в которой на единицу заряда действует единица силы.

Электрическое поле наглядно изображается с помощью силовых линий. Силовой линией электрического поля называется линия, в каждой точке которой касательная совпадает с вектором напряженности поля. Силовые линии проводятся с такой густотой, чтобы число линий, пронизывающих воображаемую площадку 1м2, перпендикулярную полю, равнялось величине напряженности поля в данном месте. Тогда по изображению электрического поля можно судить не только о направлении, но и о величине напряженности поля. Электрическое поле называется однородным, если во всех его точках напряженность Е одинакова. В противном случае поле называется неоднородным.

При положительном заряде, образующем поле, вектор напряженности направлен вдоль радиуса от заряда, при отрицательном - вдоль радиуса по направлению к заряду. Исходя из положительного заряда (или входя в отрицательный заряд) силовые линии теоретически простираются до бесконечности.

Если поле образовано не одним зарядом, а несколькими, то силы, действующие на пробный заряд, складываются по правилу сложения векторов. Поэтому и напряженность системы зарядов в данной точке, поля равна векторной сумме напряженностей полей от каждого заряда в отдельности.

(13.3)

Согласно принципу суперпозиции электрических полей можно найти напряженность в любой точке А поля двух точечных зарядов и(рис. 13.1). Сложение векторовипроизводится по правилу параллелограмма. Направление результирующего векторанаходится построением, а его абсолютная величина может быть подсчитана по формуле

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]