Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТАУ 1часть.doc
Скачиваний:
125
Добавлен:
29.03.2015
Размер:
2.69 Mб
Скачать

Понятие устойчивости по Ляпунову.

Пусть САУ описывается с помощью системы уравнений при заданных начальных условиях:

Решением данного уравнения является как функция начальных значений (уравнение невозмущенного движения). Здесьxi0 – установившееся движение.

К системе приложено внешнее воздействие, которое привело к отклонению движения от установившегося

.

Для данных отклонений можно записать систему уравнений:

Уравнение - является уравнением возмущенного движения.

Невозмущенное движение () называетсяустойчивым по отношению к переменным xi, если для любого положительного числа А2, как бы мало оно ни было, найдется другое положительное число 2, которое удовлетворяет условию для всех возмущений:

,

а возмущенное движение удовлетворяет условию

,

где i – весовые коэффициенты.

Движение будет устойчивым, если при небольших изменениях начальных условий, вызванных внешними воздействиями, невозмущенное движение будет отличаться от возмущенного движения мало.

Данное определение справедливо как для линейных, так и для нелинейных систем.

Свободное движение линейной или линеаризованной системы описывается однородным дифференциальным уравнением

где - свободная составляющая выходной величины системы.

Система является устойчивой, если свободная составляющая xc(t) переходного процесса с течением времени стремится к нулю, т.е. если

.

Такая устойчивость называется асимптотической.

Если свободная составляющая неограниченно возрастает, т.Е. Если

,

то система неустойчива.

Наконец, если свободная составляющая не стремится ни к нулю, ни к бесконечности, то система находится на границе устойчивости.

Найдем общее условие, при котором система, описываемая уравнением (*), устойчива. Решение уравнения (*) равно сумме

где Ck – постоянные, зависящие от начальных условий; pk – корни характеристического уравнения

.

Корни данного уравнения могут быть действительными (pk=k), мнимыми (pk=jk) и комплексными (pk=k± jk).

Переходная составляющая (**) при t стремится к нулю лишь в том случае, если каждое слагаемое вида . Характер этой функции времени зависит от вида корняpk. Рассмотрим все возможные случаи расположения корней pk на комплексной плоскости (см. рис.) и соответствующие им функции xk(t), которые показаны внутри кругов (как на экране осциллографа).

1

. Каждому действительному корнюpk=k в решении (**) соответствует слагаемое вида

Если k<0 (кореньр1), то функция (***) приtстремится к нулю. Еслиk>0 (кореньр3), то функция (***) неограниченно возрастает. Еслиk=0 (кореньр2), то функция (***) остается постоянной.

2. Каждой паре сопряженных комплексных корней pk=k± jk в решении (**) соответствуют два слагаемых, объединенных в одно

Эта функция представляет собой синусоиду с частотой kи амплитудой, изменяющейся во времени по экспоненте. Если действительная часть двух комплексных корнейk<0 (корнир4ир5), то колебательная составляющая (****) будет затухать. Еслиk>0 (корнир8ир9), то амплитуда колебаний будет неограниченно возрастать. Наконец, еслиk=0 (корнир6ир7), т.е. если оба сопряженных корня – мнимые (pk=+ jk, pk+1=- jk), тоxk(t)представляет собой незатухающую синусоиду с частотойk.

Общее условие устойчивости:

Для устойчивости линейной автоматической системы управления необходимо и достаточно, чтобы действительные части всех корней характеристического уравнения системы были отрицательны.

При этом действительные корни рассматриваются как частный случай комплексных корней, у которых мнимая часть равна нулю. Если хотя бы один корень имеет положительную действительную часть, то система будет неустойчивой.

Устойчивость системы зависит только от вида корней характеристического уравнения и не зависит от характера внешних воздействий на систему. Устойчивость есть внутренне свойство системы, присущее ей вне зависимости от внешних условий.

Используя геометрическое представление корней на комплексной плоскости (см. рис.) в виде векторов или точек, можно дать вторую формулировку общего условия устойчивости (эквивалентную основной):

Для устойчивости линейной системы необходимо и достаточно, чтобы все корни характеристического уравнения находились в левой полуплоскости. Если хотя бы один корень находится в правой полуплоскости, то система будет неустойчивой.

Мнимая ось j является границей устойчивости в плоскости корней. Если характеристическое уравнение имеет одну пару чисто мнимых корней (pk=+jk, pk+1=-jk), а все остальные корни находятся в левой полуплоскости, то в системе устанавливаются незатухающие гармонические колебания с круговой частотой . В этом случае говорят, что система находится наколебательной границе устойчивости.

Точка =0 на мнимой оси соответствует так называемому нулевому корню. Если уравнение имеет один нулевой корень, то система находится на апериодической границе устойчивости. Если таких корня два, то система неустойчива.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]