Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на КСЕ экзамен.doc
Скачиваний:
204
Добавлен:
17.03.2015
Размер:
728.06 Кб
Скачать

Билет № 7 Принципы организации современного естезствознания

В наше время стало модой говорить о законах природы и общества. Применительно к природе это, строго говоря, неверно. Природа не знает законов. Это мы придумываем их, пытаясь хотя бы как-то систематизировать происходящее. Термин “закон природы” следует понимать в том смысле, что природные явления повторяемы и, следовательно, предсказуемы. Как бы-то ни было, повторяемость природных явлений дает возможность науке формулировать законы, которые принято называть законами природы. В их исследовании человечество руководствуется некоторыми чрезвычайно общими принципами, облегчающими процесс изучения природных явлений.

Один из наиболее общих естественнонаучных принципов – принцип причинности, утверждающий, что одно природное явление порождает другое, являясь его причиной.

Существование цепочки причинно-следственных связей позволяет иногда сделать выводы общего характера. Так, опираясь только на непрерывность цепочки причин и следствий, немецкий судовой врач Роберт Майер сумел сформулировать закон сохранения и превращения энергии, являющийся фундаментальным законом современного естествознания.

Обратите внимание на то, что вопрос “почему”, строго говоря, неправомерен. Мы не знаем и, по-видимому, никогда не узнаем конечной причины ни одного природного явления. Правильнее было бы спрашивать “как”. Какой закономерностью описывается данное явление?

Наука в своем развитии работает над выявлением все более и более глубоких причин природных явлений. Этот процесс дает теологам основание утверждать, что в конечном итоге научный процесс должен привести к определению конечной причины, т. е. Бога, и в этом пункте наука и религия сольются.

Другим общим принципом является принцип Кюри. Он назван по имени того самого Пьера Кюри, который вместе со своей женой Марией Склодовской — Кюри открыл химический элемент радий. Кроме этого Пьер Кюри за свою недолгую жизнь сделал еще довольно много научных открытий. По-видимому, важнейшим из них является принцип Кюри.

Представьте себе некоторое качество А. Например, электрический заряд или, скажем, рыжий цвет волос, или еще какое-нибудь качество. Вряд ли оно будет равномерно распределено в пространстве. Вероятнее всего в пространстве будет существовать градиент (Градиентом скалярной функции называют вектор, направленный в сторону скорейшего возрастания этой функции. Величина градиента равна производной от этой функции, взятой по направлению ее скорейшего возрастания) этого качества.

Принцип Кюри утверждает, что если существует градиент некоторого качества А, то неизбежно возникнет перенос этого качества в сторону его недостачи, причем поток качества А, т. е. его количество, переносимое через единичную площадку в единицу времени, пропорционален величине этого градиента.

Представьте себе пространственное распределение товара под названием лавровый лист в нашей стране. Максимум его приходится, конечно же, на субтропические зоны Кавказа, а минимум его, что вполне естественно, приходится на районы Крайнего Севера. Налицо градиент лаврового листа. Согласно принципу Кюри существование такого градиента приведет к возникновению переноса лаврового листа с районов Кавказа на Север.

Существует огромное число эмпирических законов из области физической и химической кинетики от закона Ома и до классического уравнения диффузии, являющихся следствиями принципа Кюри. Мне кажется, что экономистам следует очень внимательно отнестись к этому принципу. Ясное его понимание позволит избежать массы ошибок.

Чрезвычайно продуктивным в научном отношении является уже упоминавшийся ранее принцип двойственности (дополнительности). Он основан на двойственной природе познания. Вы, наверное, уже обратили внимание на существование парных понятий, совместно определяющих взаимоисключающие стороны целого. Выделение таких частей является существенной частью процесса познания.

Описывая что бы то ни было, мы прибегаем к абстракции — выделению сторон изучаемого, важных в данном отношении. Несущественные стороны обычно опускаются из рассмотрения. В дальнейшем, если выбранная абстракция оказывается плодотворной, она замещает исходное представление об изучаемом явлении. При этом отброшенные стороны явления опускаются из рассмотрения, даже если они являются весьма существенными.

Принцип двойственности

Принцип двойственности предписывает нам при описании чего бы то ни было одновременно рассматривать две взаимоисключающие стороны. В зависимости от обстоятельств более существенной может оказаться одна из них. В других обстоятельствах важнее окажется другая. Если, пытаясь решить какую-нибудь задачу, вы встретились с непреодолимыми трудностями — попробуйте подход, основанный на альтернативных представлениях. Весьма вероятно, что он окажется удачным.

Кто из вас скажет, что такое свет? В школе вам объясняли, что это электромагнитная волна. Это представление принято в классической парадигме и в общем неплохо описывает свойство света. Однако, как вы знаете, свет состоит из отдельных частиц — фотонов. Без этого представления невозможно объяснить фотоэффект, эффект Комптона и многое другое. Так что же такое свет — это волна или поток частиц? При изучении свойств света допустима и та и другая абстракция. Согласно принципу двойственности избежать ошибок в описании возможно, проводя и то и другое описание параллельно

Принцип суперпозиции

Принцип суперпозиции утверждает, что результат воздействия на материальную систему двух факторов может быть представлен в виде суперпозиции (наложения) воздействия каждого из этих факторов, действующих независимо друг от друга. В этом принципе неявно предполагается, что при наложении факторы не возмущают друг друга. Принцип обладает меньшей степенью общности, чем принцип Кюри. Однако во многих случаях оказывается весьма полезным.

Принцип симметрии

Принцип симметрии основан на изначальных представлениях об однородности и изотропности пространства. Предполагает инвариантность природных процессов к преобразованиям симметрии. Основываясь на принципе симметрии, Эмми Нетер показала, что основополагающие физические законы сохранения энергии и импульса (количества движения) являются следствием однородности и изотропности пространства.

Принцип симметрии использует интуитивное представление о полном равноправии правого и левого. Тем более удивительной должна показаться вам “левая” ориентированность живой природы. Вам, по-видимому, известно, что молекулы многих природных соединений закручены наподобие пружины. Такую закрученную структуру имеет, например, сахар или входящий в ваши организмы холестерин. Спиральную структуру имеют многие ферменты растительного и животного происхождения. Если получать такие соединения путем химического синтеза, то в полном соответствии с принципом симметрии получается примерно одинаковое количество молекул, закрученных по правой  и по левой спирали. Так вот, все живое на нашей планете состоит из молекул, закрученных по левой спирали. Обратите внимание, что и сердце у вас смещено влево, а не вправо. Почему это так, науке еще предстоит выяснить. Пока же отметим, что принцип симметрии, сколь бы соблазнительно очевидным он ни выглядел, является весьма и весьма ограниченным.

Еще более ограниченным, хотя от того и не менее плодотворным является принцип подобия. Согласно этому принципу после известного преобразования уравнения, описывающие подобные системы, оказываются одинаковыми.  Возьмем, к примеру, так называемые малые колебания. Оказывается, что после некоторых математических преобразований колебание груза, подвешенного на ниточке, и электрического тока в колебательном контуре могут быть описаны одним и тем же уравнением. Принцип подобия удается применить, увы, не всегда. Однако, если в процессе своей практической деятельности вы сумели обнаружить подобие между какими-то группами явлений, — считайте, что успех вам обеспечен.

Принцип относительности

Согласно принципу относительности не существует абсолютного движения. А следовательно, не существует и абсолютного пространства, абсолютного времени и т. п. Этот принцип подразумевает, что протекание природных процессов не зависит от того, какую точку зрения занимает наблюдатель, их описывающий. Был выдвинут Альбертом Эйнштейном в качестве одной из основ частной теории относительности. Оспаривался многими учеными. В настоящее время прочно вошел в инертное ядро современной научной парадигмы.

Прямым следствием принципа относительности является принцип инвариантности законов природы к преобразованиям системы отсчета, в которой они были сформулированы. Принцип инвариантности утверждает, что вид основных уравнений, описывающих природные явления, не зависит от преобразования координат и времени, входящих в эти уравнения.

Билет № 8 Основные понятия современного естествознания

Билет № 9 2-ой закон термодинамики. Принцип возрастания энтропии в закрытых системах

В настоящее время теплосиловые и тепловые установки получили широкое распространение в различных отраслях народного хозяйства. На промышленных предприятиях они составляют основную важнейшую часть технологического оборудования.  Наука, изучающая методы использования энергии топлива, законы процессов изменения состояния вещества, принципы работы различных машин и аппаратов, энергетических и технологических установок, называется теплотехникой. Теоретическими основами теплотехники являются термодинамика и теория теплообмена. Термодинамика опирается на фундаментальные законы (начала), которые являются обобщением наблюдений над процессами, протекающими в природе независимо от конкретных свойств тел. Этим объясняется универсальность закономерностей и соотношений между физическими величинами, получаемых при термодинамических исследованиях. Первый закон термодинамики характеризует и описывает процессы превращения энергии с количественной стороны и дает все необходимое для составления энергетического баланса любой установки или процесса. Второй закон термодинамики, являясь важнейшим законом природы, определяет направление, по которому протекают термодинамические процессы, устанавливает возможные пределы превращения теплоты в работу при круговых процессах, позволяет дать строгое определение таких понятий, как энтропия, температура и т.д. В этой связи второй закон термодинамики существенно дополняет первый. В качестве третьего начала термодинамики принимается принцип недостижимости абсолютного нуля. В теории теплообмена изучаются закономерности переноса теплоты из одной области пространства в другую. Процессы переноса теплоты представляют собой процессы обмена внутренней энергией между элементами рассматриваемой системы в форме теплоты.Общая характеристика и формулировка второго закона термодинамики Естественные процессы всегда направлены в сторону достижения системой равновесного состояния (механического, термического или любого другого). Это явление отражено вторым  законом термодинамики, имеющим большое значение и для анализа работы теплоэнергетических машин. В соответствии с этим законом, например, теплота самопроизвольно может переходить только от тела с большей температурой к телу с меньшей температурой. Для осуществления обратного процесса должна быть затрачена определенная работа. В связи с этим второй закон термодинамики можно сформулировать следующим образом:  невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более теплым (постулат Клаузиуса, 1850 г.). Второй закон термодинамики определяет также условия, при которых теплота может, как угодно долго преобразовываться в работу. В любом разомкнутом термодинамическом процессе при увеличении объема совершается положительная работа:     ,  где1– конечная работа, v1и v2– соответственно начальный и конечный удельный объем; но процесс расширения не может продолжаться бесконечно, следовательно, возможность преобразования теплоты в работу ограничена. Непрерывное преобразование теплоты в работу осуществляется только в круговом процессе или цикле. Каждый элементарный процесс, входящий в цикл, осуществляется при подводе или отводе теплотыdQ,сопровождается совершением или затратой работы, увеличением или уменьшением внутренней энергии, но всегда при выполнении условияdQ= dU+ dL и dq= du+ dl,которое показывает, что без подвода теплоты (dq=0)внешняя работа может совершаться только за счет внутренней энергии системы, и, подвод теплоты к термодинамической системе определяется термодинамическим процессом. Интегрирование по замкнутому контуру дает: ,  , так как  . Здесь QЦ и LЦ- соответственно теплота, превращенная в цикле в работу, и работа, совершенная рабочим телом, представляющая собой разность |L1| - |L2| положительных и отрицательных работ элементарных процессов цикла. Элементарное количество теплоты можно рассматривать как подводимое(dQ>0)и отводимое(dQ<0)от рабочего тела. Сумма подведенной теплоты в цикле |Q1|, а сумма отведенной теплоты |Q2|. Следовательно, LЦ =QЦ =|Q1| - |Q2|. Подвод количества теплоты Q1 к рабочему телу возможен при наличии внешнего источника с температурой выше температуры рабочего тела. Такой источник теплоты называется горячим. Отвод количества теплоты Q2 от рабочего тела также возможен при наличии внешнего источника теплоты, но с температурой более низкой, чем температура рабочего тела. Такой источник теплоты называется холодным. Таким образом, для совершения цикла необходимо иметь два источника теплоты: один с высокой температурой, другой с низкой. При этом не все затраченное количество теплоты Q1может быть превращено в работу, так как  количество теплоты Q2 передается холодному источнику. Условия работы теплового двигателя сводятся к следующим: -необходимость двух источников теплоты (горячего и холодного); -циклическая работа двигателя; -передача части количества теплоты, полученной от горячего источника, холодному без превращения ее в работу. В связи с этим второму закону термодинамики можно дать еще несколько формулировок: -передача теплоты от холодного источника к горячему невозможна без затраты работы; -невозможно построить периодически действующую машину, совершающую работу и соответственно охлаждающую тепловой резервуар; -природа стремится к переходу от менее вероятных состояний к более вероятным. Следует подчеркнуть, что второй закон термодинамики (так же как и первый), сформулирован на основе опыта. В наиболее общем виде второй закон термодинамики может быть сформулирован следующим образом: любой реальный самопроизвольный процесс является необратимым. Все прочие формулировки второго закона являются частными случаями наиболее общей формулировки. В.Томсон (лорд Кельвин) предложил в 1851 г. следующую формулировку: невозможно при помощи неодушевленного материального агента получить от какой-либо массы вещества механическую работу посредством охлаждения ее ниже температуры самого холодного из окружающих предметов. М.Планк предложил формулировку более четкую, чем формулировка Томсона: невозможно построить периодически действующую машину, все действие которой сводилось бы к понятию некоторого груза и охлаждению теплового источника. Под периодически действующей машиной следует понимать двигатель, непрерывно (в циклическом процессе) превращающий теплоту в работу. В самом деле, если бы удалось построить тепловой двигатель, который просто отбирал бы теплоту от некоторого источника и непрерывно (циклично) превращал его в работу, то это противоречило бы положению о том, что работа может производиться системой только тогда, когда в этой системе отсутствует равновесие (в частности, применительно к тепловому двигателю – когда в системе имеется разность температур горячего и холодного источников). Если бы не существовало ограничений, накладываемых вторым законом термодинамики, то это означало бы, что можно построить тепловой двигатель при наличии одного лишь источника теплоты. Такой двигатель мог бы действовать за счет охлаждения, например, воды в океане. Этот процесс мог бы продолжаться до тех пор, пока вся внутренняя энергия океана не была бы превращена в работу. Тепловую машину, которая действовала бы таким образом, В.Ф.Оствальд удачно назвал вечным двигателем второго рода (в отличие от вечного двигателя первого рода, работающего вопреки закону сохранения энергии). В соответствии со сказанным формулировка второго закона термодинамики, данная Планком, может быть видоизменена следующим образом:  осуществление вечного двигателя второго рода невозможно. Следует заметить, что существование вечного двигателя второго рода не противоречит первому закону термодинамики; в самом деле, в этом двигателе работа производилась бы не из ничего, а за счет внутренней энергии, заключенной в тепловом источнике, так, что с количественно стороны процесс получения работы из теплоты в данном случае не был бы невыполнимым. Однако существование такого двигателя невозможно с точки зрения качественной стороны процесса перехода теплоты между телами. Понятие энтропии Несоответствие между превращением теплоты в работу и работы в теплоту приводит к односторонней направленности  реальных процессов в природе, что и отражает физический смысл второго начала термодинамики в законе о существовании и возрастании в реальных процессах некой функции, названной энтропией, определяющей меру обесценения энергии. Часто второе начало термодинамики преподносится как объединенный принцип существования и возрастания энтропии. Принцип существования энтропии формулируется как математическое выражение энтропии термодинамических систем в условиях обратимого течения процессов: Принцип возрастания энтропии сводится к утверждению, что энтропия изолированных  систем неизменно возрастает при всяком изменении их состояния и остается постоянной лишь при обратимом течении процессов: Оба вывода о существовании и возрастании энтропии получаются на основе какого-либо постулата, отражающего необратимость реальных процессов в природе. Наиболее часто в доказательстве объединенного принципа существования и возрастания энтропии используют постулаты Р.Клаузиуса, В.Томпсона-Кельвина, М. Планка. В действительности принципы существования и возрастания энтропии ничего общего не имеют. Физическое содержание: принцип существования энтропии характеризует термодинамические свойства систем, а принцип возрастания энтропии – наиболее вероятное течение реальных процессов. Математическое выражение принципа существования энтропии – равенство, а принципа возрастания – неравенство. Области применения: принцип существования энтропии и вытекающие из него следствия используют для изучения физических свойств веществ, а принцип возрастания энтропии – для суждения о наиболее вероятном течении физических явлений. Философское значение этих принципов также различно. В связи с этим принципы существования и возрастания энтропии рассматриваются раздельно и математические выражения их для любых тел получаются на базе различных постулатов. Вывод о существовании абсолютной температуры T и энтропии s как термодинамических функций состояния любых тел и систем составляет основное содержание второго закона термодинамики и распространяется на любые процессы – обратимые и необратимые. В связи с тем, что непрерывное получение работы из теплоты возможно только при условии передачи части отбираемой от горячего источника теплоты холодному источнику, следует подчеркнуть важную особенность тепловых процессов: механическую работу, электрическую работу, работу магнитных сил и т.д. можно без остатка превратить в теплоту. Что же касается теплоты, то только часть ее может превращена в периодически повторяющемся процессе в механическую и другие виды работ; другая ее часть неизбежно должна быть передана холодному источнику. Этой важнейшей особенностью тепловых процессов определяется то особое положение, которое занимает процесс получения работы из теплоты любых других способов получения работы (например, получения механической работы за счет кинетической энергии тела, получения электроэнергии за счет механической работы, производства работы магнитным полем за счет электроэнергии и т.д.). При каждом из этих способов преобразования часть энергии должна затрачиваться на неизбежные необратимые потери, такие как трение, электросопротивление, магнитная вязкость и др., переходя при этом в теплоту

Билет № 10 Системный подход в современном естествознании Системный подход Особенностью современного естествознания является осознанное внедрение идей системности во все его отрасли. Системность реализуется в рамках системного подхода, т.е. исследований, в основе которых лежит изучение объектов как сложных систем. Под системным подходом в широком смысле понимают метод исследования окружающего мира, при котором интересующие нас предметы и явления рассматриваются как части или элементы определенного целостного образования. Эти части и элементы, взаимодействуя друг с другом, формируют новые свойства целостного образования (системы), отсутствующие у каждого из них в отдельности.Таким образом, мир с точки зрения системного подхода предстает перед нами как совокупность систем разного уровня, находящихся в отношениях иерархии. В современной науке в основе представлений о строении материального мира лежит именно системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое.  Для обозначения этой целостности в науке выработано понятие системы.Система занимает центральное место в системном подходе. Поэтому разные авторы, анализируя это понятие, дают определения системы с различной степенью формализации, подчеркивая разные ее стороны.Определим систему как совокупность элементов, находящихся в отношениях и связях друг с другом и образующих некую целостность. Системам независимо от их природы присущ ряд свойств: 1.Целостность - принципиальная несводимость свойств составляющих ее элементов и невыводимость из последних свойств целого, а также зависимость каждого элемента, свойства и отношения системы от его места внутри целого, функции и т.д. Например, ни одна деталь часов отдельно не может показать время, это способна сделать лишь система взаимодействующих элементов; 2.Структурность - возможность описания системы через установление ее структуры или, проще говоря, сети связей и отношений системы. Структурность также подразумевает обусловленность свойств и поведения системы не столько свойствами и поведением ее отдельных элементов, сколько свойствами ее структуры. Простейший пример: разные свойства алмаза и графита определяются различной структурой при одинаковом химическом составе; 3.Иерархичность систем, т.е. каждый компонент системы в свою очередь может рассматриваться как система, а исследуемая в конкретном случае система представляет собой один из компонентов более широкой системы. Например, живая клетка многоклеточного организма является, с одной стороны, частью более общей системы - многоклеточного организма, а с другой - сама имеет сложное строение и, безусловно, должна быть признана сложной системой; 4.Множественность описания системы, т.е. в силу принципиальной сложности каждой системы ее познание требует построения множества различных моделей, каждая из которых описывает лишь определенный аспект системы. Например, любое животное имеет части тела, которые могут рассматриваться как его элементы; это животное можно рассмотреть как совокупность скелета, нервной, кровеносной, мышечной и других систем; наконец, его можно проанализировать как совокупность химических элементов. Известно большое количество классификаций систем. Так, системы можно разделить на материальные и абстрактные. Материальные системы представляют собой целостные совокупности материальных объектов и в свою очередь делятся на системы неорганической природы (физические, химические, геологические и др.) и на живые (начиная с простейших биологических систем через организмы, виды, экосистемы к социальным системам). Абстрактные системы являются продуктом человеческого мышления. Это разного рода понятия, гипотезы, теории, концепции и т.д. По другому основанию можно разделить системы на статические, состояние которых в течение времени не меняется (например, газ в герметичной емкости и находящийся в равновесии), и динамические, состояние которых изменяется (земная кора, организм, биогеоценоз и т.д.). Еще одна классификация делит системы на детерминированные, в которых значение переменных системы в некоторый момент времени позволяет установить состояние системы в любой другой момент, и вероятностные (стохастические), в которых с определенной вероятностью можно предсказать направление изменения переменных. Классификация по характеру взаимоотношения системы и ее среды делит системы на закрытые,которые не ведут обмена со своей средой веществом и энергией; полуоткрытые, обменивающиеся только энергией, и открытые, которые обмениваются и энергией, и веществом. Эволюция системных представлений. Многие исследователи полагают, что системность всегда, осознанно или неосознанно, была методом любой науки. Считается, что первые представления о системах возникли в античности. В трудах Евклида, Платона, Аристотеля, стоиков разрабатывались идеи системности знания, аксиоматического построения логики, геометрии. Представления системности бытия развивались в концепциях Б. Спинозы и Г.В. Лейбница, в научной систематике XVII-XVIII вв., стремившейся показать естественно-научную системность мира; примером такой систематики может служить классификация растений и животных К. Линнея. Принципы системной природы знания разрабатывались в немецкой классической философии. Так, согласно И. Канту, научное знание есть система, в которой целое главенствует над частями, Ф.В. Шеллинг и Г.В.Ф. Гегель трактовали системность познания как важнейшее требование диалектического мышления. Первым в явной форме вопрос о научном подходе к управлению сложными системами поставил в 1834-1843 гг. М.А. Ампер, который выделил специальную науку об управлении государством и назвал ее кибернетикой. Почти в то же время польский философ Б. Трентовский начал читать курс лекций, изложенный им в книге “Отношение философии к кибернетике как искусству управления народом”. Трентовский ставил целью построение научных основ практической деятельности руководителя (“кибернета”). Он подчеркивал, что управление будет действительно эффективным, если учитывает все важнейшие внешние и внутренние факторы, влияющие на объект управления. Общество середины XIX в. оказалось не готовым воспринять идеи кибернетики. Лишь в конце XIX в. системная проблематика снова появилась в поле зрения науки. На этот раз внимание было сосредоточено на вопросах структуры и организации систем. В 1890 г. Е.С. Федоров опубликовал свои выводы о том, что может существовать только 230 разных типов кристаллической решетки, хотя любое вещество при определенных условиях может кристаллизоваться. Безусловно, это открытие касалось прежде всего минералогии и кристаллографии, но его более общий смысл и значение отметил Федоров. Важно было осознать, что все невообразимое разнообразие природных тел реализуется из ограниченного и небольшого количества исходных форм. Это верно и для лингвистических устных и письменных построений, архитектурных конструкций, строения вещества на атомном уровне, музыкальных произведений, других систем. Развивая системные представления, Федоров выявил и некоторые закономерности развития систем, в частности он установил, что главным средством жизнеспособности и прогресса систем является не их приспособленность, а способность к приспособлению (“жизненная подвижность”), не стройность, а способность к повышению стройности. Следующий шаг в изучении системности как самостоятельного предмета связан с именем А.А. Богданова, в 1913-1917 гг. опубликовавшего свою книгу “Всеобщая организационная наука (тектология)”, где он высказал идею о том, что все существующие объекты и процессы имеют определенный уровень организованности. В отличие от естественных наук, изучающих специфические особенности организации конкретных явлений, тектология должна изучать общие закономерности организации для всех уровней организованности, рассматривая все явления как непрерывные процессы организации и дезорганизации, исследовать закономерности развития организации, соотношения устойчивого и изменчивого, значение обратных связей и собственных целей организации (которые могут как содействовать целям высшего уровня организации, так и противоречить им), роль открытых систем. Массовое усвоение системных понятий, осознание системности мира, общества и человеческой деятельности началось в 1948 г., когда американский математик Н. Винер опубликовал книгу “Кибернетика”. Первоначально он определил кибернетику как науку об управлении и связи в животных и машинах. Однако уже в следующей своей книге Винер анализирует с позиций кибернетики процессы, происходящие в обществе. Научное сообщество отреагировало на появление кибернетики неоднозначно, полагая, что одна дисциплина не может рассматривать одновременно технические, биологические, экономические и социальные объекты и процессы. Первый международный конгресс по кибернетике (Париж, 1956) принял предложение считать кибернетику не наукой, а искусством эффективного действия. В нашей стране кибернетика была встречена особенно настороженно и даже враждебно. Однако по мере ее развития стало ясно, что кибернетика - это самостоятельная наука со своим предметом изучения и своими методами исследования. Так, по А.И. Бергу, кибернетика - это наука об оптимальном управлении сложными динамическими системами; по А.Н. Колмогорову, кибернетика - это наука о системах, воспринимающих, хранящих, перерабатывающих и использующих информацию.Эти определения признаны достаточно общими и полными. Уже из самих определений ясно, что предметом кибернетики является исследование сложных систем. Более того, хотя при изучении системы требуется учет ее конкретных свойств, для кибернетики в принципе несущественно, какова природа этой системы, т.е. является ли она физической, биологической, экономической, организационной или даже воображаемой. В поле зрения кибернетики попадают объекты любой природы, как только выясняется, что это сложные системы. Параллельно и в определенной степени независимо от кибернетики развивается еще один подход к науке о системах - общая теория систем. В естествознании осознанная системность часто развивается именно на основе этого подхода. Идея построения теории, которая может быть использована в изучении систем любой природы, была выдвинута австрийским биологом Л. фон Берталанфиопубликовавшим свои соображения в книге “Общая теория систем” в 1968 г.. Один из путей реализации этой идеи он видел в том, чтобы отыскивать структурное сходство законов, установленных в различных дисциплинах, и, обобщая их, выводить общесистемные закономерности. Прогресс в области системности в исследовании систем связан с бельгийской школой во главе с И. ПригожинымРазвивая термодинамику неравновесных физических систем, он понял, что обнаруженные им закономерности характерны для систем любой природы. Наряду с переоткрытием уже известных положений (иерархичность уровней организации систем; несводимость друг к другу и невыводимость друг из друга закономерностей разных уровней организации; наличие наряду с детерминированными случайных процессов на каждом yровне организации и др.) Пригожий предложил новую теорию системодинамики. Согласно его взглядам, материя не является пассивной субстанцией, ей присуща спонтанная активность, вызванная неустойчивостью неравновесных состояний, в которые рано или поздно приходит любая система в результате взаимодействия с окружающей средой. После опубликования в 1978 г. (на русском - в 1980 г.) работы Г. Хакена “Синергетика”, направление, занимающееся изучением сложных саморазвивающихся систем, стало называться синергетикой. По Хакену, в рамках синергетики анализируется совместное действие отдельных частей неупорядоченной системы, результатом которого является самоорганизация системы. Таким образом, наращивание системности знаний - постоянный процесс, происходящий во всех областях человеческой деятельности. Осознанное использование системного подхода к изучению различных объектов и явлений, в том числе природных, в настоящее время развивается в рамках трех основных направлений - кибернетики, общей теории систем и синергетики. Попытки объединить все эти направления предпринимаются системным анализом. Необходимость системного подхода. Для того чтобы осознать необходимость системности во всех отраслях человеческой деятельности, обратимся к практической деятельности человека, рассмотрев последовательное формирование трех уровней системности труда: механизацию, автоматизацию и кибернетизацию. Каждый из этих уровней, надстраиваясь на предыдущем, включает его в себя и не отменяет его полностью. Механизация -простейший способ повышения эффективности труда. С помощью механизмов и машин один человек выполняет физическую работу, посильную многим людям. Механизация, позволяя решать многие проблемы, однако, имеет естественный предел - работой механизмов управляет человек, а его возможности ограничены физиологически: лопату нельзя делать слишком широкой; машина не должна иметь слишком много индикаторов и рычагов управления и т.д. Решение проблемы состоит в том, чтобы исключить участие человека из конкретного производственного процесса, т.е. возложить на машины выполнение не только самого процесса, но операций по его регулированию. Автоматизация - способ повышения производительности труда с помощью автоматов, т.е. технических устройств, реализующих указанные две функции. В жизнь вошли торговые и игровые автоматы, автоматическая телефонная связь, в промышленности функционируют автоматические линии, цеха и заводы, развивается промышленная и транспортная робототехника. Большие возможности представляют перестраиваемые, многофункциональные автоматы, управляемые компьютерами. Однако автоматизировать можно только те работы, которые хорошо изучены, подробно и полно описаны, о которых точно известно, что, в каком порядке и как надо делать в каждом случае, точно известны все возможные случаи и обстоятельства, в которых может оказаться автомат. Автомат реализует определенный алгоритм, который в какой-то своей части может быть неправилен или неточен либо не предусматривает всех возможных ситуаций; в этих случаях автомат не соответствует целям его создания. Такие проблемы возникают в процессе руководства человеческими коллективами, при проектировании, эксплуатации и управлении крупными техническими комплексами, при вмешательстве (например, медицинском) в жизнедеятельность человеческого организма, при воздействии человека на природу, т.е. в тех случаях, когда приходится сталкиваться с неформализуемостью процессов, происходящих в системе, и непредвиденностью некоторых внешних условий. Кибернетизация.- совокупность способов решения возникающих при этом проблем - третий уровень системности практической деятельности человека. Кибернетика первой стала претендовать на научное решение проблем управления сложными системами. Поэтому, когда автоматизация (т.е. формальная алгоритмизация) невозможна, следует использовать человеческий интеллект, т.е. способность ориентироваться в незнакомых условиях и находить решение слабо формализованных задач. При этом человек выполняет операции, которые не поддаются формализации: экспертная оценка или сравнение неколичественных вариантов, взятие на себя ответственности и т.д. На таком принципе строятся автоматизированные (в отличие от автоматических) системы управления, в которых формализованные операции выполняют автоматы и компьютеры, а неформализованные операции - человек. Дальнейший путь кибернетизации обычно связывают с попытками хотя бы частично смоделировать интеллектуальные возможности человека.