Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

3 курс / Фармакология / Синтез_и_изучение_свойств_новых_материалов_с_противоопухолевой

.pdf
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
6.66 Mб
Скачать

131

цитотоксичностью: максимальная цитотоксичность проявляется в отношении клеточной линии HeLa (IC50 = 2,5 мкМ), что сравнимо с действием доксорубицина

(IC50 = 1,5 мкМ) и более, чем в 4,5 раза превосходит цитотоксический эффект индивидуального соединения 1.57 (IC50 = 11,8 мкМ), при этом GO-1.57 обладает значительно меньшей цитотоксичностью в отношении неопухолевой клеточной линии НЕК 293 по сравнению с доксорубицином и соединением 1.57.

132

СПИСОК ЛИТЕРАТУРЫ

1.Molchanov O.E. et al. Biomarkers and potential targets for immune and cellular therapy in triple negative breast cancer // Cell Ther Transplant. – 2022. – Vol. 11. – № 2.

– P. 16–30.

2.Patel R. V, Keum Y.-S., Park S.W. Medicinal chemistry discoveries among 1,3,5- triazines: recent advances (2000-2013) as antimicrobial, anti-TB, anti-HIV and antimalarials. // Mini Rev. Med. Chem. Netherlands. – 2014. – Vol. 14. – № 9. – P. 768–

789.

3.Singla P., Luxami V., Paul K. Triazine as a promising scaffold for its versatile biological behavior // Eur. J. Med. Chem. – 2015. – Vol. 102. – P. 39–57.

4.Cascioferro S. et al. 1,3,5-Triazines: A promising scaffold for anticancer drugs development // Eur. J. Med. Chem. – 2017. – Vol. 142. – P. 523–549.

5.Raghu M.S. et al. Novel 1,3,5-triazine-based pyrazole derivatives as potential antitumor agents and EFGR kinase inhibitors: synthesis, cytotoxicity, DNA binding, molecular docking and DFT studies // New J. Chem. Royal Society of Chemistry. – 2021.

– Vol. 45. – № 31. – P. 13909–13924.

6. Tomorowicz Ł. et al. New 2-[(4-Amino-6-N-substituted-1,3,5-triazin-2- yl)methylthio]-N-(imidazolidin-2-ylidene)-4-chloro-5-methylbenzenesulfonamide Derivatives, Design, Synthesis and Anticancer Evaluation. // Int. J. Mol. Sci. – 2022. – Vol. 23. – № 13. – P. 7178.

7.Chalermnon M. Biguanide-Based Synthesis of 1,3,5-Triazine Derivatives with Anticancer Activity and 1,3,5-Triazine Incorporated Calcium Citrate Nanoparticles. // 2021. – Molecules. – Vol. 26 – P. 1028.

8.Thews O., Riemann A. Tumor pH and metastasis: a malignant process beyond hypoxia // Cancer and Metastasis Reviews. – 2019. – Vol. 38. – P. 113–129.

9.Kothayer H. et al. Synthesis and in vitro anticancer evaluation of some 4,6-diamino- 1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors // Bioorg. Med. Chem. Lett. – 2016. – Vol. 26. – № 8. – P. 2030–2034.

10.Prokhorov A. M. et. al. Triazines, Tetrazines, and Fused Ring Polyaza Systems. // Progress in Heterocyclic Chemistry. – 2012. – Vol. 24. – P. 421-441.

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

133

11. Junaid A. et al. 6,N2-Diaryl-1,3,5-triazine-2,4-diamines: Synthesis, antiproliferative activity and 3D-QSAR modeling // RSC Adv. Royal Society of Chemistry. – 2020. – Vol.

10, № 21. – Р. 12135-12144.

12.Afonso C.A.M., Lourenço N.M.T., Rosatella A. de A. Synthesis of 2,4,6-tri- substituted-1,3,5-triazines. // Molecules. – 2006. – Vol. 11. – № 1. – P. 81–102.

13.Sharma A. et al. Exploring the orthogonal chemoselectivity of 2,4,6-trichloro-1,3,5- triazine (TCT) as a trifunctional linker with different nucleophiles: Rules of the game // Front. Chem. – 2018. – Vol. 6. – P. 00516

14.Hexalen ® (altretamine) – Product discontinuation. RxNews® OptumRx Clinical

Services Department. – Optum. – 2018.

15.Keldsen N. et al. Altretamine (hexamethylmelamine) in the treatment of platinumresistant ovarian cancer: a phase II study // Gynecol. Oncol. – 2003. – Vol. 88. – № 2. – P. 118–122.

16.Dubois J. et al. In vitro cytotoxicity of hexamethylmelamine (HMM) and its derivatives. // Anticancer Res. Greece. – 1990. – Vol. 10. – № 3. – P. 827–832.

17.Duong V.B. et al. A Simple Synthesis of the Anticancer Drug Altretamine // Letters in Organic Chemistry. – 2020. – Vol. 17. – № 8. – P. 628–630.

18.Damia G., D’lncalci M. Clinical Pharmacokinetics of Altretamine // Clin.

Pharmacokinet. – 1995. – Vol. 28. – № 6. – P. 439–448.

19. Deepa P., Kolandaivel P., Senthilkumar K. Theoretical investigation of interaction between psoralen and altretamine with stacked DNA base pairs // Mater. Sci. Eng. C. – 2012. – Vol. 32. – № 3. – P. 423–431.

20.Lee C.R., Faulds D. Altretamine. // Drugs. – 1995. – Vol. 49. – № 6. – P. 932–953.

21.Srivastava J.K. et al. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase // Scientific reports. – Vol.7. – №1. – P. 5851.

22.Hu Z. et al. Solid-Phase Synthesis and Antitumor Evaluation of 2,4-Diamino-6-aryl- 1,3,5-triazines // J. Comb. Chem. American Chemical Society. – 2009. – Vol. 11. – № 2. –

P. 267–273.

23. Ranjbari S. et al. Investigations of antiproliferative and antioxidant activity of β- lactam morpholino-1,3,5-triazine hybrids // Bioorg. Med. Chem. – 2020. – Vol. 28. – № 8.

P. 115408.

134

24. Bünning T.H. et al. Synthesis and characterisation of a boron-rich symmetric triazine bearing a hypoxia-targeting nitroimidazole moiety // Symmetry (Basel). – 2021. – Vol. 13. – № 2. – P. 1–9.

25.Ostrovskii V.A. et. al. Medicinal chemistry of tetrazoles // Russ. Chem. Bull. –

2012. – Vol. 61. – № 4. – P. 768–780.

26.Ostrovskii V.A. et. al. Developments in Tetrazole Chemistry (2009–16) // Adv. Heterocycl. Chem. – 2017. – Vol. 123. – P. 1–62.

27.Popova E.A. el. al. Tetrazole Derivatives as Promising Anticancer Agents // AntiCancer Agents Med. Chem. –2017. – Vol. 17. – № 14. – P. 1856–1868.

28.О. В. Миколайчук и др. Синтез, исследование взаимодействия с ДНК и противоопухолевая активность нового тетразолсодержащего производного 2-амино- 4,6-ди(азиридин-1-ил)-1,3,5-триазина // Известия академии наук. Серия химическая.

– 2022. – №5. – стр. 1050.

29.Pathania S., Narang R.K., Rawal R.K. Role of sulphur-heterocycles in medicinal chemistry: An update // Eur. J. Med. Chem. –2019. – Vol. 180. – P. 486–508.

30.Sharma V. et al. A Comprehensive Review on Fused Heterocyclic as DNA Intercalators: Promising Anticancer Agents. // Curr. Pharm. Des. United Arab Emirates, 2021. – Vol. 27. – № 1. – P. 15–42.

31.P.N.Gaponik et. al. Metal derivatives of tetrazoles. // Russ. Chem. Rev. – 2006. –

Vol. 75. – №6. – Р. 507–539.

32. Balaha M.F. et al. Synthesis, evaluation and docking study of 1, 3, 5-triazine derivatives as cytotoxic agents against lung cancer // J. Appl. Pharm. Sci. – 2016. – Vol. 6.

– № 4. – P. 28–45.

33.Moreno L.M. et al. Synthesis of New 1,3,5-Triazine-Based 2-Pyrazolines as Potential Anticancer Agents. // Molecules. – 2018. – Vol. 23. – № 8. – Р. 1956.

34.Filov VA, Stukov AN M.L. et al. Study of antitumor action of Dioxadet. // Ex-per. Oncol. – 1996. Vol. 18. – № 1. – P. 84–86.

35.Voeikov R. et al. Dioxadet-loaded nanogels as a potential formulation for glioblastoma treatment // J. Pharm. Investig. Springer Netherlands. – 2017. – Vol. 47. – №

1. – P. 75–83.

36.Bespalov V.G., Zhabin A.A., Stukov A.N., Beliaeva O.A., Murazov I.G., Semenov

A.L., Kon’kov S.A. K.I.M. Synergism of antitumor action of dioxadet and cisplatin in

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

135

model of ascitic ovarian tumor. // Sib. J. Oncol. – 2013. – Vol. 1. – P. 42–46.

37.Zhikhoreva A.A. et al. Morphological changes in the ovarian carcinoma cells of Wistar rats induced by chemotherapy with cisplatin and dioxadet // Biomed. Opt. Express. The Optical Society. – 2018. – Vol. 9. – № 11. – P. 5817.

38.Latipova D.Kh., et. al. Synergism of antitumor activity of gemcitabine and dioxadet

in mice with ascitic Ehrlich’s tumor // Vopr Onkol. – 2011. – Vol. 57. – № 6. – P. 767–

770.

39.Bespalov V. G., et. al. Both heat and new chemotherapeutic drug dioxadet in hyperthermic intraperitoneal chemoperfusion improved survival in rat ovarian cancer model // J Surg Oncol. – 2016. – Vol. 113. – № 4. – P. 438–442.

40.Gershanovich M. L, Filov V.A., et al. Results of a cooperative clinical study of the anticancer drug dioxadet in phase II // Vopr. Oncol. – 1998. – Vol. 44. – № 2. – P. 216–

220.

41. Borisov A. E., Gershanovich M. L. et al. Use of dioxadet for chemiembolization of the hepatic artery in primary and metastatic liver cancer // Vopr. oncol. – 1998. – Vol. 44.

– № 6. – P. 714–717.

42.Granov A. M, et al. Results of the use of endovascular interventions (embolization and chemoembolization) in the treatment of operable and advanced kidney cancer // Vopr. oncol. – 1998. – Vol. 44. – № 6. – P. 711–714.

43.Stukov A.N., Gershanovich M.L., et al. Antineoplastic drugs // Saint-Petersburg. NIKA. – 2011. – P. 656.

44.Ealias A.M., Saravanakumar M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application // IOP Conf. Ser. Mater. Sci. Eng. 2017.

Vol. 263, № 3.

45.Gu F.X. et al. Targeted nanoparticles for cancer therapy // Nano Today. – 2007. –

Vol. 2. – № 3. – P. 14–21.

46. Debnath S.K., Srivastava R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects // Front. Nanotechnol. – 2021. – Vol. 3. – P. 15.

47. Singh S.K. et al. Amine-modified graphene: Thrombo-protective safer alternative to graphene oxide for biomedical applications // ACS Nano. – 2012. – Vol. 6. – № 3. – P. 2731–2740.

136

48.Georgakilas V. et al. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. // Chemical reviews. – 2016. – Vol. 116. – №9. – P. 464–5519.

49.Gaponenko I.N. et al. Biological evaluation and molecular dynamics simulation of water-soluble fullerene derivative C60[C(COOH)2]3 // Toxicol. Vitr. Elsevier Ltd. – 2020.

– Vol. 62. – P. 04683.

50.Murthy S.K. Nanoparticles in modern medicine: state of the art and future challenges. // Int. J. Nanomedicine. 2007. – Vol. 2. – № 2. – P. 129–141.

51.Micha J.P. et al. Abraxane in the treatment of ovarian cancer: the absence of hypersensitivity reactions. // Gynecol. Oncol. United States. – 2006. – Vol. 100. – № 2. –

P. 437–438.

52.Ibrahim N.K. et al. Phase I and pharmacokinetic study of ABI-007, a Cremophorfree, protein-stabilized, nanoparticle formulation of paclitaxel. // Clin. cancer Res. – 2002. Vol. 8. – № 5. – P. 1038–1044.

53.Robins T., Plattner J. HIV protease inhibitors: their anti-HIV activity and potential role in treatment. // J. Acquir. Immune Defic. Syndr. United States. – 1993. – Vol. 6. –

№ 2. – P. 162–170.

54.Fang M. et al. Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites // J. Mater. Chem. – 2009. – Vol. 19. – № 38. – P. 7098–7105

55.Feng L.-L. et al. Near Infrared Graphene Quantum Dots-Based Two-Photon Nanoprobe for Direct Bioimaging of Endogenous Ascorbic Acid in Living Cells // Anal. Chem. – 2017. – Vol. 89. – № 7. – P. 4077–4084.

56.Abdelhalim A.O.E. et al. Functionalisation of graphene as a tool for developing nanomaterials with predefined properties // J. Mol. Liq. – 2022. – Vol. 348. – P. 118368.

57.Pei X. et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity // Sci. Rep. – 2020. – Vol. 10. – № 1. – P. 1–15.

58.Wang H. et al. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug // Int. J. Nanomedicine. – 2014. – Vol. 9. – № 1. – P. 1433–1442.

59.De Jaeghere F. et al. Oral bioavailability of a poorly water-soluble HIV-1 protease inhibitor incorporated into pH-sensitive particles: effect of the particle size and nutritional

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

137

state. // J. Control. release. – 2000. – Vol. 68. – № 2. – P. 291–298.

60. Zhang L. et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs // Small. – 2010. – Vol. 6. – № 4. – P. 537– 544.

61.Motlagh N. et al. Fluorescence properties of doxorubicin coupled carbon nanocarriers // Appl. Opt. – 2017. – Vol. 56. – P. 7498.

62.Yan J. et al. Antitumor Effect of GO-PEG-DOX Complex on EMT-6 Mouse Breast Cancer Cells. // Cancer Biother. Radiopharm. – 2018. – Vol. 33. – № 4. – P. 125–130.

63.Bullo S. et al. Dual Drugs Anticancer Nanoformulation using Graphene Oxide-PEG as Nanocarrier for Protocatechuic Acid and Chlorogenic Acid // Pharm. Res. Pharmaceutical Research. – 2019. – Vol. 36. – № 6. – P. 91.

64.Rosli N.F. et al. Graphene Oxide Nanoplatelets Potentiate Anticancer Effect of Cisplatin in Human Lung Cancer Cells // Langmuir. – 2019. – Vol. 35. – № 8. – P. 3176–

3182.

65. Zhuang W. et al. Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells // ACS Omega. – 2018.

– Vol. 3. – № 2. – P. 2396–2405.

66.Wei L. et al. Functionalized Graphene Oxide as Drug Delivery Systems for Platinum Anticancer Drugs // J. Pharm. Sci. – 2021. – Vol. 110. – № 11. – P. 3631–3638.

67.Singh G. et al. Fabrication of chlorambucil loaded grapheneoxide nanocarrier and its application for improved antitumor activity. // Biomed. Pharmacother. – 2020. – Vol.

129.– P. 110443.

68.Yaghoubi F. et al. A functionalized graphene oxide with improved

cytocompatibility for stimuli responsive co delivery of curcumin and doxorubicin in

cancer treatment // Sci. Rep. Nature. – 2022. – P. 1–18.

69.Wei X. et al. Engineering of gemcitabine coated nano-graphene oxide sheets for efficient near-infrared radiation mediated in vivo lung cancer photothermal therapy // J. Photochem. Photobiol. – 2021. – Vol. 216. – P. 112125.

70.Zhang Y. et al. Synthesis and characterization of Tamoxifen citrate modified reduced graphene oxide nano sheets for breast cancer therapy // J. Photochem. Photobiol. 2018. – Vol. 180. – P. 68–71.

71.Palmieri V. et al. Graphene oxide touches blood: in vivo interactions of bio-

138

coronated 2D materials // Nanoscale Horiz. – 2019. – Vol. 4. – № 2. – P. 273–290.

72.Kumar I.A. et al. Development of triaminotriazine functionalized graphene oxide capped chitosan porous composite beads for nutrients remediation towards water purification // Int. J. Biol. Macromol. – 2021. – Vol. 170. – P. 13–23.

73.Z. Beiranvand, et. al. Functionalization of fullerene at room temperature :

physicochemical properties. // RSC Advances. – 2016. – P. 112771–112775.

74.Hajizadeh Z. et al. Cu(II) immobilized on Fe3O4@HNTs–tetrazole (CFHT) nanocomposite: synthesis, characterization, investigation of its catalytic role for the 1,3 dipolar cycloaddition reaction, and antibacterial activity // RSC Adv. – 2020. – Vol. 10. –

№ 44. – P. 26467–26478.

75.Kaszyński P. et al. Chirality of the trisubstituted nitrogen center – XRD, dynamic NMR, and DFT investigation of 1,2-dihydrobenzo[e][1,2,4]triazine derivatives // Tetrahedron. – 2017. – Vol. 73. – № 27. – P. 3823–3830.

76.Ostrovskii, V. A., Koldobskii, G. I., & Trifonov R.E. Tetrazoles // Compr. Heterocycl. Chem. III. Elsevier. – 2008. – P. 257–424.

77.Sarvary A., Maleki A. A review of syntheses of 1,5-disubstituted tetrazole derivatives // Mol. Divers. – 2015. – Vol. 19. – № 1. – P. 189–212.

78.Popova E.A., Trifonov R.E., Ostrovskii V.A. Tetrazoles for biomedicine // Russ. Chem. Rev. – 2019. – Vol. 88. – № 6. – P. 644 – 676.

79.Koren A.O., Gaponik P.N., Ostrovskii V.A. Reactions of Azolium cations. II [1]. Regioselective N2 alkylation of 5 aryltetrazoles with isopropyl alcohol in sulfuric acid

media: Effect of electronic properties of aryl substituents on the reaction rate // Int. J.

Chem. Kinet. – 1995. – Vol. 27. – № 9. – P. 919–924.

80.Ostrovskii V.A., Popova E.A., Trifonov R.E. Tetrazoles // Comprehensive Heterocyclic Chemistry IV, Elsevier. – 2022. – P. 182-232,

81.Abdelhalim A.O.E. et al. Graphene Oxide of Extra High Oxidation: A Wafer for Loading Guest Molecules // J. Phys. Chem. Lett. – 2021. – Vol. 12. – № 41. – P. 10015–

10024.

82.Nano Jaleel A., Shaikh Y.H., Arts S. Effect of Viscosity and Density of Substance on Dielectric Properties of Medicinal Compounds in Solution. // Nano Biomedicine and Engineering. – 2020. – Vol. 12. – №4. – P. 351-357.

83.Patrick G. An Introduction to Medicinal Chemistry. // Oxford University Press. –

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/

139

2017. – P. 1–912.

84.Czechtizky W., Hamley P. Small molecule medicinal chemistry: strategies and technologies. // Wiley. – 2015. – P. 1–528.

85.Silverman R.B., Holladay M.W. The Organic Chemistry of Drug Design and Drug Action: Third Edition // Elsevier Inc. – 2015. – P. 1–517.

86.Kustov A. V. et al. The energetics of solvation and ion-ion interactions in prospidium chloride aqueous solutions // J. Mol. Liq. – 2018. – Vol. 263. – P. 49–52.

87.Akbaş H. et al. Synthesis, structural and thermal properties of the

hexapyrrolidinocyclotriphosphazenes-based protic molten salts: Antiproliferative effects against HT29, HeLa, and C6 cancer cell lines // J. Mol. Liq. – 2017. – Vol. 230. – P. 482– 495.

88. Nikolaienko T.Y. Interaction of anticancer drug doxorubicin with sodium oleate bilayer: Insights from molecular dynamics simulations // J. Mol. Liq. – 2017. – Vol. 235.

– P. 31–43.

89. Jouyban A., Rahimpour E., Karimzadeh Z. A new correlative model to simulate the solubility of drugs in mono-solvent systems at various temperatures // J. Mol. Liq. – 2021.

– Vol. 343. – P. 117587.

90.Gurung J., Anjudikkal J., Pulikkal A.K. Amphiphilic drug–additive systems in aqueous and organic solvent–water mixed media: A comprehensive account on physicochemical properties // J. Mol. Liq. – 2020. – Vol. 318. – P. 114221.

91.Mondal M. et al. Investigation of molecular interactions insight into some biologically active amino acids and aqueous solutions of an anti-malarial drug by physicochemical and theoretical approach // J. Mol. Liq. – 2021. – Vol. 341. – P. 116933.

92.Alhumaydhi F.A. et al. Probing the interaction of memantine, an important

Alzheimer’s drug, with human serum albumin: In silico and in vitro approach // J. Mol. Liq. – 2021. – Vol. 340. – P. 116888.

93. Alam M.S., Ashokkumar B., Mohammed Siddiq A. The density, dynamic viscosity and kinematic viscosity of protic polar solvents (pure and mixed systems) studies: A theoretical insight of thermophysical properties // J. Mol. Liq. – 2018. – Vol. 251. – P. 458– 469.

94. Garca-Coln L.S., del Castillo L.F., Goldstein P. Theoretical basis for the Vogel- Fulcher-Tammann equation // Phys. Rev. B. – 1989. – Vol. 40. – № 10. – P. 7040–7044.

140

95.Ioffe B. V. Refractometry as a Method for the Physicochemical Analysis of Organic Systems // Russ. Chem. Rev. – 1960. – Vol. 29. – № 2. – P. 53–66.

96.Hodges G. et al. A comparison of log Kow (n octanol – water partition coefficient)

values for non ionic , anionic , cationic and amphoteric surfactants determined using

predictions and experimental methods // Environ. Sci. Eur. – 2019. – P. 1–18.

97.Tiejun C. et al. Computation of octanol−water partition coefficients by guiding an

additive model with knowledge // J. Chem. Inf. Model. – 2007. – Vol. 47. – № 6. – P. 2140–2148.

98. Mikolaichuk O. V et al. A cytostatic drug from the class of triazine derivatives: Its properties in aqueous solutions, cytotoxicity, and therapeutic activity // J. Mol. Liq. – 2022.

– Vol. 356. – P. 119043.

99.Zhivkova Z.D. Studies on drug-human serum albumin binding: the current state of the matter. // Curr. Pharm. – 2015. – Vol. 21. – № 14. – P. 1817–1830.

100.Herrera I., Winnik M.A. Differential binding models for isothermal titration calorimetry: Moving beyond the Wiseman isotherm // J. Phys. Chem. B. A – 2013. – Vol.

117.– № 29. – P. 8659–8672.

101.Bishop G.R., Chaires J.B. Characterization of DNA structures by circular dichroism. // Curr. Protoc. nucleic acid Chem. – 2003. – Chapter 7. – P. 7.11.

102.Topala T. et al. Experimental techniques employed in the study of metal complexesDNA - interactions // FARMACIA. – 2014. – Vol. 62. – P. 6

103.Chang Y.M., Chen C.K.M., Hou M.H. Conformational changes in DNA upon ligand binding monitored by circular dichroism // Int. J. Mol. Sci. – 2012. – Vol. 13. – № 3. – P. 3394–3413.

104.Lando D.Y. et al. Comparative thermal and thermodynamic study of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin // J. Inorg. Biochem. – 2014. – Vol. 137. – P. 85–93.

105.Wolfe A., Jr G.H.S., Meehan T. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA // Society. – 2002. – Vol. 26. – P. 6392–

6396.

106. Moore C.M., Pendse D., Emberton M. Photodynamic therapy for prostate cancer - A review of current status and future promise // Nat Clin Pract Urol. – 2009. – Vol. 6. – №

1. – P. 18–30.

Рекомендовано к изучению сайтом МедУнивер - https://meduniver.com/