Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
5 курс / Пульмонология и фтизиатрия / Патофизиология_лёгких,_Гриппи_М_А.doc
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
5.69 Mб
Скачать

Глава 3. Распределение вентиляции

Рис. 3-10. Моде.in не­равномерной иептиля-ции легких (А) Чаг-тичiк\я обе гру кцмя ВII в одной легочной еди­нице- (Б) Нарушенная ,)лаети11мосгъ н одной легочной единице. (В) Локализованная дина-м и ч ее к ая ко м 11 po(: cf и я ВП » одной легочной один и не. (Г) Ограни­ченное растяжение од­ной единицы во время наполнения легкого. В каждой модели нор­мальная единица полу­чает большую часть общего вдыхаемого объема. ( П о: F о г s -ter R. E. II, Dubois А. В., Briscoe W. A, Fisher А В. Pulmonary ventilation. In: The Lung: Physio­logic Basis of Pulmo­nary Function Tests. 3rd ed. Chicago: Year Book Medical Pudlishers, 1986; 61.)

В ранней фазе выдоха выводится воздух из верхних дыхательных путей. По­скольку эта область содержит чистый кислород, заполнивший ее после предшеству­ющего вдоха, то содержание там азота равно нулю (фаза I). Далее азотсодержащий газ анатомического мертвого пространства вымывается по мере опорожнения альве­ол: концентрация азота резко возрастает (фаза II). Вслед за этим выдыхается альве­олярный газ. У здоровых людей с минимальной неоднородностью вентиляции эта фаза кривой (фаза III) плоская, и она известна как альвеолярное плато.

У пациентов с разнообразными болезнями паренхимы и BII фаза III не плоская. 11аклон фазы III (% концентрации N^/л выдыхаемого объема) фактически является мерой неоднородности вентиляции. Очевидно, что плохо вентилируемые зоны лег­ких получают мало вдыхаемого кислорода. Соответственно эти регионы имеют вы­сокую альвеолярную концентрацию азота по сравнению с нормально вентилируе­мыми областями, т. е. наблюдается меньшее разведение азота вдыхаемым кислоро­дом. Плохо вентилируемые области опустошаются в последнюю очередь, что и обес­печивает повышение концентрации азота в течение фазы III.

На рис. 3-11 можно видеть еще один заметный подъем концентрации азота пос­ле альвеолярного плато (фаза IV). Предполагаемым механизмом, лежащим в основе фазы IV, является закрытие мелких ВП, расположенных у основания легких, при низких легочных объемах.

В период начальной фазы вдоха чистого кислорода мелкие ВП (дыхательные бронхиолы), расположенные в базальных зонах, могут быть сдавлены собственным весом легких вплоть до их закрытия. Как следствие, эти зоны получают малую долю кислорода, попадающего в легкие и начале вдоха. Тем временем вдох до уровня

Рис. 3-9. Измерении региональной ле­гочной вентиляции с помощью инга­ляции радиоактивного ксенона. Испы­туемый вдыхает определенный объем воздуха, содержащего ксенон-133. Счетная камера сканирует верхние, средние и нижние легочные зоны для количественной оценки региональной вентиляции. Каждое региональное из­мерение делится па объем легкого ("нормализуется"). Поскольку легкие имеют больший объем у оснований

(где находится больше альвеол), пред­полагается, что туда поступит больше ксенона. Однако даже с учетом апикалыю-базалыюй разницы в объеме легких вентиляция базальных отделов больше. (Mo: West J. В. Ventilation. In: Respiratory Physiology: The Essentials. 4th eel. Baltimore: Williams & Wilkins, 1990: 19.)

легких это явление, как правило, выражено неравномерно. Рис. 3-10 А представляет две идеальные легочные единицы, одна из которых вентилируется через ВП с нор­мальным сопротивлением, а другая — с увеличенным.. При каждом вдохе большая часть вдыхаемого объема распределяется в единице без обструкции. Общая эффек­тивность газообмена будет зависеть от степени перераспределения кровотока от еди­ницы с обструкцией к нормально вентилируемой.

На рис. 3-1 ОБ видно, как локализованные изменения эластичности легких (об­ратная величина растяжимости, как описано в гл. 2) создают неравномерное распре­деление вентиляции. Такого рода нарушения характерны для эмфиземы (эластич­ность снижена) и легочного фиброза (эластичность повышена). В ходе повторяю­щихся дыхательных циклов легочные единицы с увеличенной эластичностью полу­чают большую часть вдыхаемого объема. При некоторых болезнях, например эмфи­земе, может преобладать сочетание регионально измененных растяжимости и со­противления ВП (рис. 3-1 ОБ). Возникая на выдохе, такое увеличение сопротивле­ния ВП является "динамическим" (гл. 2, рис. 2-20). В результате наблюдается замет­ная неравномерность вентиляции: преобладающая часть вдыхаемого газа идет к об­ластям без обструкции с нормальной растяжимостью.

Наконец, при некоторых заболеваниях сопротивление ВП и эластичность легких могут быть нормальными, а нарушение распределения вентиляции происходит из-за региональных ограничений расправления легких (рис. 3-1ОГ). Клинические примеры включают компрессию легкого плевральным выпотом и ограничение расширения по­ловины грудной клетки при одностороннем параличе диафрагмы.

Тесты на неравномерную вентиляцию легких

Хотя для оценки неравномерности вентиляции используется ряд тестов, здесь описывается только один — тест на вымывание азота при одиночном вдохе кислорода. Другой метод, основанный на определении частотно-зависимой растяжимости, опи­сан в гл. 2. Региональное распределение вентиляции исследуется также при вдыха­нии радиоактивных газов, например ксенона.

Во время теста на вымывание азота человек делает максимальный вдох чистого кислорода после опорожнения легких до уровня остаточного объема. Таким обра­зом, он делает вдох кислорода, равный по объему жизненной емкости легких. Затем испытуемый делает медленный выдох, объем которого измеряется спирометром, до уровня остаточного объема. Концентрация азота в выдыхаемом воздухе непрерывно регистрируется на протяжении выдоха с помощью азотографа. Рис. 3-11 показывает

ifPTKinP ГмЯ'ЗТ-Л Т Я If НЯ^КГП^Г^\ЛГ»М "wm/mrni пкткллиаима а'э/лта" п/л пхгтглиигл™ тп-тлж* /-«п/••»/-•/-х_

Рис. 3-11. Кривая иымывания а.юта при одиночном вдохе ()2, демонстрирующая четыре фазы. TLC общая емкость легких; CV - объем закрытия; RV - ос­таточный объем

дение, как указывалось в разделе "Региональное распределение дыхательного объе­ма", подчиняется крутой части кривой давление-объем). Следовательно, эндоген­ный альвеолярный азот в базальных областях легких подвергнется разведению в большей степени, чем в апикальных зонах. Во время выдоха и те, и другие зоны опорожняются, создавая фазу III кривой. Когда по мере завершения выдоха проис­ходит закрытие мелких ВП базальных отделов, из богатых азотом апикальных ле­гочных зон поступает пропорционально больше газа, создавая фазу IV.

Объем легких, представляющий часть жизненной емкости и остающийся не выдохнутым к началу фазы IV кривой вымывания азота, известен как объем за­крытия. Сумма объема закрытия и остаточного объема называется емкостью за­крытия. У здоровых молодых людей закрытие ВП происходит на уровне 10 % жиз­ненной емкости, считая от остаточного объема, а после 60 лет — на уровне 40 %. У пациентов даже с малыми степенями обструкции ВП можно обнаружить значитель­ное повышение объема закрытия.

Избранная литература

Forster R. Е. II., Dubois А. В., Briscoe W. A., Fisher А. В. Pulmonary ventilation. In: The Lung: Physiologic Basis of Pulmonary Function Tests. 3rd ed. Chicago: Year Book, Medical Publishers, 1986:25-64.

Hlastala M. Ventilation. In: Crystal R. G., West J. В., eds. The Lung: Scientific Foundations. New York: Raven Press, 1991:1209-1214.

Murray J. F. Ventilation. In: Murray J. F., ed. The Normal Lung. 2nd ed. Philadelphia: W. B. Saunders, 1986:77-113.

West J. B. Ventilation. In: Respiratory Physiology: The Essentials. 4th ed. Baltimore: Williams & Wilkins, 1990:11 -20.

Физиологические основы тестирования функции легких

Марк А. Келли

Общие понятия, представленные в предыдущих главах, составляют основу тес­тов, используемых для количественной оценки функции легких. Функциональное исследование легких является важной частью клинической медицины и выполняет ряд задач: (1) диагностика заболевания легких и оценка его тяжести; (2) оценка эффективности терапии различных легочных расстройств (например, реакции боль­ных бронхиальной астмой на бронходилататоры); (3) представление о течении бо лезни из результатов последовательных тестов; и (4) обучение больных приемам правильного дыхания и убеждение их в необходимости ведения здорового образа жизни (например, убедить курильщика прекратить курение, показав ему результа­ты теста, свидетельствующие о нарушении функции легких).

В данной главе рассмотрены физиологические основы и методы тестирования функции легких. Выделены тесты, используемые для оценки различий между наи­более распространенными легочными расстройствами. Другие, менее употребимые тесты рассмотрены для иллюстрации некоторых физиологических принципов. На­конец, представлено несколько клинических случаев, показывающих, как с помо­щью функциональных тестов могут быть решены диагностические проблемы.

Основы тестирования функции легких

Дыхательная система приспосабливает обмен газов к широкому спектру разно­образных обстоятельств — от состояния покоя до тяжелой физической нагрузки. В условиях последней, когда требуется повышение потребления О2 и выделения (Х)2, необходима большая эффективность газообмена и вентиляции.

Как было изложено в главах 1-3, структура легких обеспечивает максималь­ную эффективность вентиляции. Функционально дыхательная система может быть разделена на три компонента: (1) воздухоносные пути (ВП), (2) легочная паренхима и (3) грудная клетка, выполняющая функцию мехов.

ВП представлены пол у ригидными трахеей и долевыми бронхами и более по­датливыми, мелкими бронхиолами, простирающимися до периферии легких. Тип воздушного потока варьирует от турбулентного в центральных ВП до ламинарного в мелких (гл. 2). Мелкие дыхательные пути могут быть сдавлены во время форсиро­ванного выдоха. В результате, экспираторный воздушный поток ограничивается как в норме, так и при патологии легких. Это имеет важное значение для функциональ­ного исследования легких, поскольку -диализэкспираторной части вентиляции по-

Второй функциональный компонент — эластическая паренхима легких — ведет себя подобно резиновому баллону (гл. 2). Для его наполнения требуется энергия; при прекращении энергетических затрат, поддерживающих баллон в расправленном состоянии, он спадается. Нарушения, делающие легкие жесткими (например, легоч­ный фиброз), препятствуют их полному спадению, в то время как нарушения элас­тичности легких (например, при эмфиземе) уменьшают силу, с которой они опо­рожняются.

Третий функциональный компонент — "грудные мехи" — состоит из грудной клетки, межреберных мышц и диафрагмы (гл. 1). Поскольку сами легкие не способ­ны инициировать дыхание, грудная клетка и дыхательная мускулатура должны со­здавать силы, необходимые для вентиляции. Дыхательные мышцы активны при вдо­хе; мышцы выдоха обычно работают только при определенных патологических со­стояниях и при физической нагрузке. Деформация грудной клетки и болезни дыха­тельных мышц могут влиять на функцию дыхательной "помпы", приводя к дыхатель­ной недостаточности (гл. 18).

Изменения любого из этих трех функциональных компонентов могут стать при­чиной одышки и измеримых отклонений функции легких. Функциональное иссле­дование легких используется для оценки состояния каждого из этих трех компонен­тов.

Основные группы клинически важных тестов легочной функции включают спи­рометрию, тесты на силу дыхательных мышц, измерение легочных объемов и диф­фузионной способности легких. Диффузионная способность легких обсуждается в главе 9.

Спирометрия

Спирометрия — наиболее важный способ оценки легочной функции. При про­ведении спирометрии пациент вдыхает и выдыхает с максимальной силой. Измеря­ются объемная скорость воздушного потока и изменения объема дыхательной сис­темы. Наиболее клинически значимые сведения дает анализ экспираторного манев­ра (выдоха).

Спирометр с водяным затвором

В течение десятилетий применялись спирометры простой системы, измеряв­шие объем легких с использованием закрытого контура (рис. 4-1). Пациент в поло­жении сидя дышит в камеру, которая представляет собой подвижный цилиндр, по­груженный в емкость с водой. Изменения объема легких регистрируются по измене­нию объема цилиндра, соединенного с откалиброванным вращающимся барабаном. В примере, представленном на рис. 4-1, вдох регистрируется отклонением записи на барабане кверху, а выдох — книзу.

Основным показателем спирометрии является жизненная емкость легких (ЖЕЛ; VC), представляющая собой максимальный объем воздуха, который можно вдох­нуть (инспираторная VC) или выдохнуть (экспираторная VC). Чтобы измерить VC, пациент делает сначала вдох до предельного объема легких, а затем возможно пол­ный выдох.

Некоторое количество воздуха остается в легких даже после максимального экспираторного маневра. Этот объем называют остаточным объемом (ОО; RV). Сумма жизненной емкости и остаточного объема дает общую емкость легких (ОЕЛ; TLC). Остаточный объем нельзя определить с помощью одной спирометрии; это -rtW^roT ттгл1тпгтитлтрт1кныу игшепений объема легких (см. раздел "Измерение легоч-

63

Рис. 4-1. Обычный но­ля пой спирометр. 11а-полпенпый ноадухом цилиндр, погруженный в сосуд с водой,соединен с вращающимся бараба­ном, на котором лаписы-ваютея показания спи­рометра. Ьарабам вра­щается с определенной скоростью, бумага па ба­рабане калибрована, что позволяет измерять из­менения объема легких и скорость потока вол-духа

Объемная скорость воздушного потока является главным фактором, определя­ющим вентиляторную способность легких. Объемную скорость потока можно опре­делить по экспираторному маневру жизненной емкости легких, если учесть затра­ченное на него время. При использовании спирометра, подобного тому, что изобра­жен на рис. 4-1, это время определяется на основании скорости вращения цилиндра. С помощью данных вертикальной оси, представляющих объем (VC), и данных гори­зонтальной оси, показывающих отсчет времени, рассчитывается объемная скорость воздушного потока (объем/время).

Типичная спирограмма, полученная таким способом, показана на рис. 4-2. Объем легких на вершине спирограммы — TLC. По мере того, как пациент выдыхает, реги­стрируется кривая, которая постепенно уплощается при приближении к концу вы­доха, т. е. к уровню остаточного объема легких. Из спирограммы экспираторного маневра выводят несколько ключевых величин.

Объем форсированного выдоха за 1 секунду (ОФВ,; FEV,) представляет собой количество воздуха, выдохнутого за первую секунду. Принято выражать FEV, в процентах к форсированно!^ жизненной емкости легких (ФЖЕЛ; FVC). Здоровые

Рис. 4-2. Спирометрические- из­мерения, полученные в процес­се форсированного выдоха от уровня TLC до RV (FVC)

64