Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

1 курс / Химия / Основные_типы_химических_реакций_и_процессов_в_функционировании

.pdf
Скачиваний:
31
Добавлен:
24.03.2024
Размер:
2.51 Mб
Скачать

Ион Fe+2 с лигандами CN- составляют внутреннюю сферу или комплекс,

а ионы К+ внешнюю координационную сферу:

K+

 

 

 

 

 

K+

 

 

 

CN-

 

 

-NC

 

CN-

 

 

 

 

Fe+3

 

 

-NC

 

CN-

 

 

 

 

 

CN-

 

 

 

 

 

 

 

K+ .

 

 

 

 

 

Как правило координационное число равно удвоенному заряду катиона металла, например: однозарядные катионы имеют координационное число равное 2, 2-х зарядные – 4, а 3-х зарядные – 6. если элемент проявляет переменную степень окисления, то с увеличением еѐ координационное число растет. Для некоторых комплексообразователей координационное число является постоянным, например: Со+3, Рt+4, Cr+3 имеют координационное число равное 6, у ионов В+3, Ве+2, Сu+2 , Au+3 координационное число равно 4. для большинства ионов координационное число является переменным и зависит от природы ионов внешней сферы и от условий образования комплексов.

6.3. Классификация и номенклатура комплексных соединений.

Классификация комплексных соединений проводится по различным признакам.

1.По заряду комплексного иона различают:

катионные [Cu(NH3)4]2+ анионные [Co(NO3)6]3- нейтральные [Pt(NH3)Cl2]0

2.По характеру лигандов различают:

акво- [Сu(H2O)4]SO4 аммино-[Cu(NH3)4]SO4 ацидо- К2[Cu(Cl)4] гидроксо-K2[Cu(OH)4]

По структуре внутренней сферы различают внутрикомплексные(циклические) соединения. Например, в живом организме встречаются клешневидные (хелатные) пятичленные циклы. Они образуются катионом металла и ɑ-аминокислотами. К ним относятся гемоглобин, хлорофилл, витамин В12.

При составлении названия комплексных соединений руководствуются следующими правилами:

Сначала называют внутреннюю сферу.

Составные части еѐ называют в следующей последовательности: лиганды анионы, лиганды – молекулы, комплексообразователь. Записывают формулу в обратной последовательности.

91

К названиям лигандов – ионов добавляют окончание «о» (Сl - хлоро-, СN - циано-). Нейтральные молекулы сохраняют свои названия, за исключением Н2О – акво, NН3 – амин.

Число лигандов указывают греческими числительными: ди, три-, тетра-, пента-, гекса- и т.д.

В последнюю очередь называют ионы внешней сферы.

Пример: катионные –[Cu(NH3)4 ]SO4 – тетраамминокупрат (II) сульфат; анионные – Na3[Co(NO2)6] –гексанитрокобольтат (III) натрия; нейтральные [Pt(NH3)]Cl2 - дихлородиамминоплатина.

6.4. Комплексообразующая способность s-, р- и d- элементов

Комплексообразующая способность катионов определяется следующими факторами:

Заряд катиона, радиус катиона и электронная конфигурация катиона.

Чем больше заряд катиона и меньше радиус, тем прочнее связь комплексообразователя с лигандами. Поэтому катионы s- элементов (К+, Nа+, Са+2, Мg+2 и др.) обладающие относительно большим радиусом и малым зарядом, имеют низкую комплексообразующую способность. Катионы d- элементов (Со+3, Рt+4, Сr+3и др.), имеющие, как правило небольшой радиус и высокий заряд, являются хорошими комплексообразователями.

d-элементы имеют большое количество валентных орбиталей, среди которых имеются свободные орбитали и с неподелѐнными электронными парами. Поэтому они одновременно могут быть и донорами и акцепторами. Если аналогичной возможностью обладает и лиганд, то одновременно с σ- связью (лиганд донор, а комплексообразователь является акцептором), образуюется и π-связь (лиганд акцептор, а комплексообразователь – донор). При этом происходит увеличение кратности связи, что обуславливает высокую прочность d- элементов со многими лигандами. Эта связь называется дативной связью.

6.5. Характер химической связи в комплексных соединениях.

Связь между комплексообразователем и лигандами осуществляется, посредством перекрывания электронных облаков. Связь, образованная по обменному механизму соответствует вернеровской главной валентности. Связь, образованная по донорно акцепторному механизму – побочной валентности; при этом лиганд является донором, а комплексообразователь акцептором.

Связь по донорно – акцепторному механизму может возникнуть и между нейтральными молекулами, если одна имеет атом со свободной орбиталью, а другая не поделѐнную электронную пару.

Следовательно: причина комплексообразования – валентная ненасыщенность атомов. Увеличение валентной насыщенности атомов в процессе комплексообразования ведѐт к устойчивости комплексов.

Поскольку комплексообразователь в большинстве случаев предоставляет для образования связей неравноценные орбитали, то

92

происходит их гибридизация, а тип гибридизации определяет геометрию молекул.

sp [KL2]

линейная молекула [Ag(NH3)2]+

sp3 [KL4]

тетраэдр или квадрат [Cu(H2O)4]2+

3d2 [Kl6]

октаэдр

6.6. Внешнеорбитальные и внутриорбитальные комплексы

Для катионов d- элементов характерны октаэдрические комплексы. При их образовании возможны два типа гибридизации: d23 и sр3d2, в зависимости от того, какие d-орбитали комплексообразователя доступны для лиганд.

Гибридизация d23 осуществляется в том случае, если в образовании σ связей участвуют s и р орбитали внешнего уровня и две d-орбитали предпоследнего уровня. Этот вид гибридизации называется внутренней гибридизацией, а образующиеся комплексы внутриорбитальными.

Например: [Cr(NH3)6]3+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cr

3+

 

 

 

 

 

 

 

3d

 

 

 

 

 

4s

 

 

 

4p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3d

 

 

 

4s

 

 

 

 

 

4p

 

 

 

 

 

 

 

 

 

 

[Cr(NH3)6]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

гибридизирующиеся орбитали

электронные пары от лигандов

При внутренней гибридизации лиганды прочно связаны с комплексообразователем, поэтому внутриорбитальные комплексы отличаются высокой устойчивостью.

Если на образование σ-связей комплексообразователь поставляет только орбитали внешнего внешнего уровня, то осуществляется 3d2 гибридизация. Еѐ называют внешней, а образующиеся комплексы внешнеорбитальными. Такие комплексы образуют d-элементы с полностью заселѐнными d подуровнями. Например: [Cd(Cl)6]4-

 

2+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cd

 

 

 

 

 

 

4d

 

 

 

 

 

 

 

5s

 

 

5p

5d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Cu(Cl)6]4-

4d

5s

5p

5d

гибридизирующиеся орбитали

электронные пары от лигандов

93

Энергия связей, образованных при внешней гибридизации орбиталей комплексообразователя ниже, чем при внутренней гибридизации, поэтому внешнеорбитальные комплексы обладают меньшей прочностью по сравнению с внутриорбитальными.

Если у катиона d- элемента d подуровень заселен неспаренными электронами, то тип гибридизации определяется природой лиганда. Лиганды, обладающие достаточной электронодонорной способностью, могут «вытеснить» электроны с двух орбиталей d подуровня и заставить их спариться на остальных двух орбиталях. При этом нарушается правило Гунда. Такой способностью обладают, например:

цианид-ионы, поэтому они образуют внутриорбитальные комплексы. Например: [Fe(CN)6]4-:

Fe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3d

4s

 

 

 

 

 

 

 

 

 

 

4p

[Fe(CN)6]4-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4s

 

 

 

 

 

 

 

 

4p

Если же лиганд не обладает достаточной электронодонорной

способностью,

то образуется

 

 

внешнеорбитальный комплекс, например:

[Fe(Н2О)6]2+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Fe(Н2О)6]2+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3d

 

 

 

 

 

 

 

 

 

 

 

 

 

4s

 

4p

 

 

 

 

 

 

 

 

 

 

 

 

4d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Число неспаренных электронов в процессе комплексообразования в этом случае не меняется.

6.7. Представления о строении металлоферментов и других биокомплексных соединений

(гемоглобин, цитохромы, кобаламины).

Главную роль в жизнедеятельности живых организмов играют бионеорганические соединения с макроциклическими лигандами. В таких лигандах донорные атомы связаны в единое кольцо – цикл.

Наиболее распространены тетрадентатные макроциклы – порфирины. Лигандами являются атомы азота, которые располагаются по углам квадрата и жестко скоординированы в пространстве. Поэтому они образуют прочные координационные соединения даже с катионами щелочно - земельных металлов. Например, если в качестве центрального атома выступает ион магния, то в результате образуется активный центр хлорофилла, а если используются ионы Fe2+, образуется активный центр гемоглобина.

Порфириновые комплексы железа и кобальта входят в состав

гемоглобина, каталазы, цитохромов, витамина В12. Все эти комплексы имеют октаэдрическую конфигурацию. Дефицит этих веществ в организме приводит к серьезным заболеваниям.

94

6.8.Устойчивость комплексных соединений в растворах

Ионы внешней сферы соединены с комплексом ионной связью, поэтому

в водных растворах они легко отщепляются: [Fe(Н2О)6]SO4 ↔ SO42- + [Fe(Н2О)6]2+.

Этот процесс называется первичной диссоциацией. Внутренняя сфера в зависимости от прочности также способна диссоциировать на комплексообразователь и лиганды:

[Fe(Н2О)6]2+ ↔ Fe2+ + 6 Н2О – это вторичная диссоциация. Она аналогична диссоциации слабых электролитов и характеризуется константой

равновесия: Крав. =

Fe2

H 2O 6

Fe H

2O

2

 

6

константа равновесия может служить мерой прочности комплекса: чем менее стоек комплекс, тем больше концентрация простых ионов или молекул Fe2+ и Н2О, тем больше численное значение константы. Поэтому константу равновесия,

называют константой нестойкости комплекса. Величина, обратная константе нестойкости, называется константой устойчивости:

Куст.=

1

=

Fe(H 2O)6

2

 

.

Кнест.

Fe

2

H 2O

6

 

 

 

 

 

6.9.Механизм токсического действия тяжелых металлов.

Всем известно, что загрязнение окружающей среды соединениями тяжелых металлов: ртути, свинца, кадмия, хрома, никеля и др. металлов – может привести к тяжелым отравлениям.

Механизм токсического действия таких соединений объясняется взаимодействием катионов тяжелых металлов (Мт) с бионеорганическими комплексами. Это можно записать в виде реакции:

МбL + Мт ↔ Мб + МтL

Где МбL – комплекс иона биогенного металла Мб (Fe, Zn, Cu, Co) с биоорганическим лигандом L (например порфирином); Мт – ион тяжелого металла.

Если устойчивость комплекса МтL больше, чем устойчивость МбL, происходит смещение равновесия вправо и в организме накапливаются соединения МтL, что приводит к нарушению нормальной работы организма.

6.10. Значение комплексных соединений в медицине.

Комплексообразование имеет большое значение для многих биологических процессов. В виде аквакомплексов находятся в крови, лимфе и тканевых жидкостях ионы щелочных и щелочноземельных металлов, выполняющих в организме важные и многообразные физиологические

95

функции. Ионы d – элементов в результате высокой комплексообразующей способности находятся в организме исключительно в виде комплексов с белками и входят в состав гормонов, ферментов, витаминов и других жизненно важных соединений. Некоторые комплексные соединения обладают биологической активностью и применяются в качестве лекарственных препаратов - например витамин В12 , участвующий в процессах кроветворения, является комплексом кобальта.

Токсические свойства некоторых веществ обусловлены их высокой комплексообразующей способностью. Например, токсическое действие на организм цианидов и оксида углерода объясняется их способностью образовывать прочные комплексы с катионами железа. Цианиды блокируют атомы железа, входящие в состав дыхательного фермента цитохромоксидазы, в результате прекращается клеточное дыхание. Оксид углерода (СО) связывает железо гемоглобина, вследствие этого гемоглобин утрачивает способность осуществлять транспорт кислорода.

В медицинской практике при лечении многих заболеваний в качестве лекарственных препаратов используются соединения меди, серебра, цинка, кобальта, хрома, золота, платины, ртути и др.

Вопросы для самоконтроля

1.Основные положения и понятия координационной теории

2.Классификация комплексных соединений.

3.Комплексообразующая способность s-р-и d- элементов. Еѐ причины.

4.Природа химической связи в комплексных соединениях с позиций метода валентных связей.

5.Влияние природы комплексообразователя на распределение электронов в ионе - комплексообразователе. Внешнеорбитальные и внутриорбитальные комплексные соединения.

6.Представления о строении металлоферментов и других биокомплексных соединений (гемоглобин, цитохромы, кобаламины).

7.Устойчивость комплексных соединений. Константа нестойкости комплексных соединений, еѐ связь с константой устойчивости.

8.Механизм цитотоксического действия соединений тяжелых металлов.

9.Значение комплексных соединений

Упражнения

1. Вычислите заряды следующих комплексных ионов, образованных

Сr (III): а) [Cr(H2O)5Cl], б) [Cr(H2O)4Cl2 ], в) [Cr(H2O)2 (C2O4)2].

Дайте названия этих комплексных соединений.

2. Составьте комплексное соединение, если: а) комплексообразователь Zn2+, лиганды ОН-, координационное число (к.ч.) 4, внешнюю сферу подберите сами. Дайте название этому КС; б) комплексообразователь Аg+, лиганды NH3,

96

к.ч.= 2, внешнюю сферу подберите сами. Дайте название этому КС; в) комплексообразователь Fe+2, лиганды СN, к.ч. = 6, внешнюю сферу подберите сами. Дайте название этому КС. Напишите для всех комплексов первичную и вторичную диссоциацию, покажите выражение константы нестойкости комплексов.

3.Назовите комплексные соли: [Cu(NO3)4] (NO3)2, [Co(H2O)(NH3)4]Br2, [Co(NH3)5SO4]NO3, K4[Fe(CN)6], Na2[PdI4], K2[HgI4], K2[Pt(OH)5Cl].

4.Напишите формулы комплексных неэлектролитов: а) тетраамминофосфатхром, б) диаминодихлорплатина, в) триамминотрихлорокобальт, г) диамминотетрахлорплатина. В каждом из комплексов укажите степень окисления комплексообразователя

5.Составьте уравнения электролитической диссоциации солей:

(NH4)2Fe(SO4)2, [Cu(NH3)4]SO4, Na3[Co(NO2)6].

6.Напишите выражение для константы нестойкости следующих комплексных ионов: [Cd(NH3)4]+2, [Co(NH3)6]+3, [AlF6]-3.

7.Константы нестойкости для некоторых комплексных ионов равны: а) 1∙10-37, б) 8∙10-16, в) 1∙10-44. Какой из указанных ионов менее устойчив к диссоциации?

Лабораторные работы

Работа 1.Получение и cвойства комплексных соединений.

Приборы и реактивы: штатив с набором пробирок, растворы солей:

CuSO4, KI, Bi(NO3)2, Zn(NO3)2, AgNO3, CrCl3, AlCl3, Al2(SO4)3, NiSO4, K3[Fe(CN)6], Na3[Co(NO2)6], K4[Fe(CN)6, растворы гидроксида аммония,

гидроксида натрия, азотной и щавелевой кислот, раствор КАl(SO4)2, кристаллический CrCl3∙6H2O, NH4CNS.

Опыт 1. Различие между простыми и комплексными ионами.

В одну пробирку помещают 3-4 капли раствора хлорида железа (III), в другую – 3-4 кап. К3[Fe(CN)6]. В обе пробирки добавляют 2-3 капли роданида аммония (NH4CNS) или роданида калия (КCNS). Что наблюдаете? Напишите уравнения реакций и объясните данное явление.

FeCl3 + 6KCNS → K3[Fe(CN)6] + 3KCl

цвет?

K3[Fe(CN)6] + KCNS → реакции нет, почему?

Опыт 2. Комплексные соединения в реакциях обмена

а) Помещают в одну пробирку 2-3 капли раствора К3[Fe(CN)6], в другую 2-3 капли раствора FeCl3. В обе пробирки добавляют по 2-3 капли FeSO4. Что происходит? Напишите уравнение реакции обмена.

Опыт 3.Образование комплексной соли меди при взаимодействии с раствором аммиака.

В пробирку внесят 10-15 капель раствора сульфата меди (ІІ) и по каплям добавляют 25% раствора ΝН4ОН. Наблюдают растворение выпавшего вначале осадка основного сульфата меди и изменение цвета раствора при образовании комплексного сульфата тетраамин меди (ІІ).

2CuSO4 + 2NH4OH → Cu2(OH)2SO4↓ + (NH4)2SO4

Cu2(OH)2SO4 + 8NH4OH → [Cu(NH3)4(OH)2] + [Cu(NH3)4]SO4 + 8H2O

97

цвет?

Работа 2.Получение катионных комплексных соединений

Опыт 4

а) Комплексное основание никеля.

В пробирку вносят 3-4 капли раствора сульфата никеля и такой же объѐм раствора гидроксида натрия. К осадку добавляют 5-6 капель 25% раствора гидроксида аммония. Что происходит? Сравните окраску ионов Ni+2 в растворе сульфата никеля с окраской полученного раствора. Напишите все уравнения реакций получения комплексного иона, если координационное число Ni+2 равно шести.

б) Образование комплексного иона серебра

к 3-4 каплям раствора нитрата серебра прибавляют 2-3 кали раствора НС1. К части полученного осадка прибавляют 10-12 кап. раствора аммиака. Что происходит? К полученному раствору добавляют раствор азотной кислоты до получения кислой среды. Какой эффект наблюдаете? Опишите все процессы в уравнениях реакций.

Работа 3. Получение анионных комплексных соединений Опыт 5. Получение гидроксокомплексов цинка, хрома и алюминия.

Втри пробирки помещают раздельно растворы солей цинка, хрома (ІІІ), алюминия и в каждую пробирку добавляют по каплям раствор гидроксида натрия. Наблюдают вначале выпадение осадков гидроксидов, а затем их растворение в избытке щелочи. Напишите уравнения реакций,

учитывая, что образуются растворимые гидроксокомплексы, содержащие ионы [Zn(OH)4]-2, [Cr(OH)4]-, [Al(OH)4]-.

Опыт 6. Получение тетраиодвисмута калия

Впробирку к 3-4 каплям раствора нитрата висмута прибавляют по каплям раствор иодида калия до выпадения осадка темно-бурого цвета иодида висмута. Растворяют этот осадок, прибавляют избыток раствора иодида калия. Напишите уравнения реакций образования комплекса висмута (ІІІ), если координационное число его равно 4. Определите заряд комплексного иона.

Опыт 7. Получение внутрикомплексного соединения оксалата железа

(ІІІ).

Вдве пробирки вносят по 5-7 капель раствора хлорида железа (ІІІ). Одну пробирку оставить для контроля. В другую пробирку добавить раствор гидроксида натрия до начала выпадения осадка. К полученному осадку прибавляют насыщенный раствор щавелевой кислоты. Наблюдают растворение осадка и обесцвечивание раствора. Проверяют присутствие ионов железа (ІІІ) в обоих пробирках, прибавлением раствора роданида калия. Во всех ли пробирках наблюдается образование окрашенного

раствора? Напишите уравнения реакций в молекулярной и ионной формах, если формула комплексного иона железа имеет вид [Fe(C2O4)3]-3.

Опыт 8. Разрушение комплекса при разбавлении раствора.

98

Вносят в пробирку 3 капли раствора нитрата серебра и добавляют к нему раствор иодида калия по каплям до выпадения осадка, постоянно встряхивая пробирку. Выпавший вначале осадок растворяется. К полученному раствору добавляют 4-6 капель воды. что наблюдаете? Дайте объяснение и напишите уравнение реакций. Аналогичный опыт проделывают с раствором соли алюминия, получив вначале гидроксид алюминия.

Опыт 9. Сравнение устойчивости аквакомплексов меди.

в) В пробирку помещают небольшое количество безводного порошка сульфата меди и добавляют воды до половины пробирки. Раствор приобретает окраску за счет образования аквакомплекса меди. Составьте формулу этого комплекса и укажите составные части.

Полученный раствор делят на 3 пробирки. Одну оставляют для контроля. Во вторую по каплям добавляют раствор NH4OH, встряхивая каждый раз пробирку для лучшего перемешивания ее содержимого. В третью пробирку добавляют небольшое количество сухого хлорида натрия. Отмечают изменение цвета в обеих пробирках, напишите уравнения соответствующих реакций.

Растворы во второй и третьей пробирках разбавляют водой. Что наблюдаете? Сделайте вывод об устойчивости аква-, амиачного и галогенидного комплексов меди.

Литература

ЛИТЕРАТУРА ОСНОВНАЯ

1.Общая химия. Биофизическая химия. Химия биогенных элементов: Учебник для медицинских вузов. /Ю.А. Ершов, В.А. Попков, А.С. Берлянд и другие. Под ред. Ю.А. Ершова, 8 изд.,560 с. – М.: Высш.

Шк., 2010.

2.Практикум по общей химии. Биофизическая химия. Химия биогенных элементов: Учебное пособие для студентов медицинских вузов.(Ред. В.А. Попков).- М., Высшая школа, 4 изд., 239 с., 2008 г.

3.Сборник задач и упражнений по общей химии. Учебное пособие. (С.А.Пузаков, В.А. Попков, А.А. Филиппова). М: Высшая школа, 4

изд., 255с., 2010г.

4.Глинка Н. Л. Общая химия. Изд-во «Химия», 1978., С. 49-56.

Литература основная

1.Общая химия. Учебник для медицинских вузов. (В.А. Попков, С.А. Пузаков), 976с.-ГЭОТАР Медиа, 2007г.

2.Ахметов Н. С. Актуальные вопросы курса неорганической химии. М., Просвещение, 1991, С. 25-40.

99

3.Егоров А. С., Шацкая К. П. Химия. Пособие – репититор для поступающих в вузы

4.Кузьменко Н. Е., Еремин В. В., Попков В. А. Начала химии М., 1998. С.

57-61.

5.Керенцева В. П. Строение вещества, Изд-во СГУ, 1980.

100