Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Нормальная физиология / Основы_физиологии_человека_Том_2_Агаджанян_Н_А_ред_2014

.pdf
Скачиваний:
2
Добавлен:
24.03.2024
Размер:
4.98 Mб
Скачать

ный, насыщенный водяными парами воздух, вода имеют высокую теплопроводность. Поэтому пребывание при низкой температуре в среде с высокой влажностью сопровождается усилением теплопотерь организма. Влажная одежда теряет свои теплоизолирующие свойства.

Конвекция – теплоотдача, осуществляемая путем переноса тепла движущимися частицами воздуха (воды). Конвекционный теплообмен, в отличие от теплопроведения, связан с обменом не только энергии, но и молекул. Это происходит потому, что вокруг всех предметов существует пограничный слой воздуха или жидкости, толщина которого зависит от окружающих условий. Когда тело окружено неподвижным воздухом, от кожи отходит теплый воздух, который, переходя в окружающий воздух, переносит как энергию, так и молекулы. Такой процесс называется свободной конвекцией. Если окружающий воздух движется, то толщина пограничного слоя зависит от скорости движения воздуха. Пограничный слой, равный при неподвижном воздухе нескольким миллиметрам, при ветре может уменьшиться до нескольких микронов. Теплообмен такого типа в значительной степени зависит от скорости движения воздуха и называется принудительной конвекцией. Количество переносимого конвекцией тепла описывается уравнением:

Ек = h (ТкТв),

где Ек – количество тепла, передаваемого путем конвекции; Тк – температура кожи; Тв – температура воздуха; h – коэффициент передачи тепла, который зависит от величины поверхности и скорости ветра.

Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой. Непосредственно контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность 40–60%, тело взрослого человека рассеивает в окружающую среду путем теплопроведения и конвекции около

141

25–30% тепла. Количество отдаваемого конвекцией тепла возрастает при увеличении скорости движения воздушных потоков (ветер, вентиляция).

Испарение – это отдача тепла в окружающую среду за счет испарение пота или влаги с поверхности кожи и слизистых дыхательных путей. При температуре внешней среды около 20 ºС, испарение составляет около 36 г/ч. На испарение 1 г воды затрачивается 0,58 ккал тепловой энергии, т.е. путем испарения организм человека отдает в этих условиях около 20% всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы усиливают потоотделение, и оно может возрасти до 500–2000 г/ч. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением, поэтому единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100%. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, капельки пота, не успевая испариться, стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной.

Температура тела человека и ее измерение

Температура тела гомойотермных организмов является сложной функцией теплопродукции в разных тканях, переноса тепла в результате циркуляции крови и локальных температурных градиентов. Поскольку тепло отдается в окружающую среду главным образом через кожу, температура поверхностных тканей (оболочки), как правило, ниже температуры более глубоких тканей (ядра). В понятие гомойотермное ядро включают ткани человеческого тела, расположенные на глубине 1 см от поверхности и глубже. Температура поверхностных тканей неравномерна – она выше на участках тела, хорошо снабжаемых кровью или закрытых одеж-

142

дой, т.е. зависит, с одной стороны, от интенсивности переноса к ней тепла кровью, а с другой – от охлаждающего или согревающего действия температуры внешней среды. В конечностях существует продольный (осевой) температурный градиент и радиальный (перпендикулярный поверхности) температурный градиент. В связи с неравномерностью геометрических форм человеческого тела пространственное распределение температуры тела описывается сложной трехмерной функцией. Например, когда легко одетый человек находится в помещении с температурой воздуха 20 ºС, температура глубокой мышечной части бедра составляет примерно 35 ºС, температура глубоких слоев икроножной мышцы 33 ºС, а в центре стопы лишь 27–28 ºС. Температура глубоких тканей тела распределена более равномерно и состав-

ляет около 36,7–37,0 ºС.

Температура ядра – одна из важнейших констант гомеостаза, определяющая скорость биохимических реакций, конформационные изменения биологически важных молекул, а следовательно, и уровень активности всех клеток организма (рис. 11.4). Однако и она не является постояной ни в пространственном, ни во временном отношении. Даже в головном мозге существует радиальный температурный градиент более чем в 1 ºС от центральной части до коры. Суточные колебания внутренней температуры в условиях относительного покоя находятся в пределах 1 °С. Максимального значения температура тела достигает в 18–20 ч и снижается до своего минимума во время ночного сна, к 4–6 ч утра. Суточные изменения температуры ядра основаны на эндогенном ритме (биологические часы), который обычно синхронизирован с внешними датчиками времени. Во время путешествий с пересечением земных меридианов требуется 1–2 нед., чтобы температурный ритм пришел в соответствие с местным временем. На суточный ритм могут накладываться ритмы с более длительными периодами. Наиболее отчетливо проявляется температурный ритм, синхронизированный с менструальным циклом.

143

Рис. 11.4. Температура различных областей тела человека при температуре воздуха 20 ˚С (А) и 35 ˚С (Б)

Показаны изотермы (линии, соединяющие точки с одинаковой температурой). При 20 ˚С между внутренней областью тела (ядром, заштриховано) и поверхностью (оболочкой) существуют резкие перепады температуры. При 35 ˚С внутренняя область распространяется на конечности

(П. Стерки, 1984)

Колебания температуры тела, вызванные изменениями внешней температуры, выражены в значительно большей степени вблизи поверхности тела и в концевых частях конечностей, т.е. можно выделить «пойкилотермную» оболочку и «гомойотермную» сердцевину (ядро). При охлаждающем действии температуры внешней среды масса ядра уменьшается, а при согревании – возрастает. Наиболее близко среднее значение температуры ядра тела отражает температура крови в полостях сердца, аорте и других крупных сосудах. В качестве показателя температуры глубоких тканей

144

тела обычно используют значения ректальной, подъязычной и подмышечной температуры, а также температуры в наружном слуховом проходе. Температуру мозга хорошо отражает температура барабанной перепонки. Для клинических целей предпочтительно измерение ректальной температуры, подъязычная температура обычно на 0,2–0,5 ºС ниже ректальной. Подмышечная температура также может служить показателем внутренней температуры, поскольку если рука плотно прижата к туловищу, температурные градиенты смещаются так, что граница внутреннего слоя доходит до подмышечной впадины, однако это требует длительного времени (в ряде случаев до 30 мин.).

Система терморегуляции

Терморегуляция – это совокупность физиологических процессов, деятельность которых направлена на поддержание относительного постоянства температуры ядра в условиях изменения температуры среды с помощью регуляции теплоотдачи и теплопродукции. Терморегуляция направлена на предупреждение нарушений теплового баланса организма или на его восстановление, если такие изменения уже произошли.

Система терморегуляции состоит из ряда элементов со взаимосвязанными функциями. Информация о температуре приходит от периферических и центральных терморецепторов (датчиков) по афферентным нервам к центру терморегуляции в гипоталамусе (рис. 11.5). Этот центр обрабатывает поступившую информацию и посылает команды эффекторам (исполнительным звеньям), т.е. активирует различные механизмы, которые обеспечивают изменение теплопродукции и теплоотдачи. По своей работе система терморегуляции аналогична системе автоматизированного контроля с отрицательной обратной связью, которая противодействует изменениям температуры, вызванным внешними и внутренними возмущениями. Температура ядра поддерживается на определенном уровне, и величина реакции эффекторов пропорциональна отклонению истинной температуры от этого уровня.

145

146

Рис. 11.5. Функциональная система, поддерживающая оптимальную для данных условий среды температуру организма (К.В. Судаков, А.В. Котов, Т.Н. Лосева, 2002)

Рефлекторные и гуморальные механизмы терморегуляции

Функции терморецепторов выполняют специализированные нервные клетки, имеющие особо высокую чувствительность к температурным воздействиям. Они расположены в различных частях тела: коже, скелетных мышцах, кровеносных сосудах, во внутренних органах (в желудке, кишечнике, матке, мочевом пузыре), в дыхательных путях, в спинном мозге, ретикулярной формации, среднем мозге, гипоталамусе, коре больших полушарий и в других отделах ЦНС. Много термочувствительных нейронов имеется в медиальной преоптической области переднего гипоталамуса. Можно выделить три группы терморецепторов: экстерорецепторы (расположены в коже), интерорецепторы (сосуды, внутренние органы), центральные терморецепторы (ЦНС). Наиболее изучены терморецепторы кожи. Больше всего их на коже лица и шеи. Кожные терморецепторы бывают двух типов – холодовые и тепловые. Оба типа особенно чувствительны к степени изменения температуры. Холодовые рецепторы резко повышают частоту импульсации в ответ на охлаждение и снижают ее, когда температура увеличивается. Тепловые рецепторы реагируют на изменение температуры противоположным образом. На поверхности тела количественно преобладают холодочувствительные терморецепторы. Холодовые рецепторы располагаются на глубине 0,17 мм от поверхности кожи, их около 250 тысяч. Тепловые рецепторы находятся глубже – 0,3 мм от поверхности, их примерно 30 тысяч.

При любой совместимой с жизнью температуре от периферических рецепторов в ЦНС поступает стационарная информация. Разряды тепловых рецепторов наблюдаются в диапазоне температур от 20 до 50 °С, а холодовых – от 10 до 41 °С. При температуре ниже 10° холодовые рецепторы и нервные волокна гомойотермных животных блокируются. При температуре выше 45 ºС холодовые рецепторы могут вновь активироваться, что объясняет феномен парадоксаль-

147

ного ощущения холода, наблюдаемый при сильном нагревании. Усиление активности холодовых и тепловых рецепторов наблюдается вплоть до 50 ºС, при более высоких температурах терморецепторы повреждаются. При температуре 47– 48 °С наряду с терморецепторами начинают возбуждаться и болевые рецепторы. Этим объясняют необычную остроту парадоксального ощущения холода.

Возбуждение рецепторов зависит как от абсолютных значений температуры кожи в месте раздражения, так и от скорости и степени ее изменения. Одни рецепторы реагируют на перепад температуры в 0,1 °С, другие – в 1 °С, а третьи возбуждаются лишь при достижении разницы в 10 °С. Для холодовых рецепторов оптимум чувствительности (генерация импульсации максимальной частоты) лежит в пределах 25– 30 °С, для тепловых – в пределах 38–43 °С. В этих областях минимальные изменения температуры вызывают наибольшую реакцию рецепторов.

Центры терморегуляции

Информация от кожных рецепторов идет по чувствительным нервным волокнам типа А-дельта (от холодовых рецепторов) и С, поэтому в ЦНС она доходит с разной скоростью. Афферентный поток нервных импульсов от терморецепторов поступает через задние корешки спинного мозга к вставочным нейронам задних рогов, по спиноталамическому тракту этот поток достигает передних ядер таламуса, откуда часть информации после переключения проводится в соматосенсорную кору больших полушарий, а часть – в гипоталамические центры терморегуляции.

Часть афферентного потока импульсов от терморецепторов кожи и внутренних органов поступает по более древним (спиноталамическому и спиноретикулярному) трактам, восходящим в ретикулярную формацию, неспецифические ядра таламуса, медиальную преоптическую область гипоталамуса и в ассоциативные зоны коры головного мозга.

148

Кора больших полушарий, участвуя в переработке температурной информации, обеспечивает условно-рефлектор- ную регуляцию теплопродукции и теплоотдачи. Сильные терморегуляторные реакции вызывают природные условные раздражители, сопровождающие на протяжении всей жизни организма его охлаждение или нагревание (вид снега, льда, яркое солнце и т.д.). Высшие отделы ЦНС (кора и лимбическая система) обеспечивают возникновение субъективных температурных ощущений (холодно, прохладно, тепло, жарко), мотивационных возбуждений и поведения, направленного на поиск более комфортной среды.

На теплопродукцию и теплоотдачу организма влияют многие нервные структуры. Интеграция различной сенсорной информации, связанной с тепловым балансом, и регуляция температуры тела осуществляются главным центром терморегуляции, расположенном в гипоталамусе. Разрушение этого участка гипоталамуса или нарушение его нервных связей (перерезка на уровне среднего мозга) ведет к утрате способности регулировать температуру тела. В терморегуляторном центре обнаружены различные по функциям группы нервных клеток: термочувствительные нейроны; клетки, определяющие уровень поддерживаемой в организме температуры тела; в переднем гипоталамусе расположены нейроны, управляющие процессами теплоотдачи, а в заднем гипоталамусе – теплопродукции. После разрушения центров переднего гипоталамуса физиологическая активность в условиях холода сохраняется, но в условиях жары температура тела быстро повышается. Разрушение центров заднего гипоталамуса нарушает способность к усилению энергетического обмена в холодной среде и температура тела в этих условиях падает.

Термочувствительные нервные клетки способны различать разницу температуры в 0,01 °С крови, протекающей через мозг. Данные о температуре передаются в группу нервных клеток гипоталамуса, задающих в организме уровень регулируемой температуры тела, – «установочную точку» терморегуляции. На основе анализа и сравнения значений средней температуры тела и заданной величины температуры

149

механизмы «установочной точки» через эффекторные нейроны гипоталамуса воздействуют на процессы теплоотдачи или теплопродукции, чтобы привести в соответствие фактическую и заданную температуру. Посредством центра терморегуляции устанавливается равновесие между теплопродукцией и теплоотдачей. Имеются данные о том, что соотношение в гипоталамусе концентраций ионов натрия и кальция определяет «заданный» уровень температуры. Изменение концентрации этих ионов приводит к изменению уровня температуры тела.

В терморегуляции принимают участие и гуморальные факторы, прежде всего гормоны щитовидной железы (тироксин и др.) и надпочечников (адреналин и др.). Снижение температуры вызывает увеличение концентрации этих гормонов в крови. Они усиливают окислительные процессы, что сопровождается увеличением теплообразования. Адреналин суживает периферические сосуды, что приводит к снижению теплоотдачи.

Участие эффекторов в регуляции температуры

Процессы, которые обеспечивают температурный гомеостаз, можно подразделить на следующие группы: 1) поведенческие механизмы (перемещение в среде с целью поиска комфортных температурных условий); 2) вегетативные механизмы (сосудистые реакции, изменение интенсивности метаболизма); 3) адаптивные механизмы, или акклиматизация.

Обычно гомойотермные организмы одновременно используют все эти способы.

В термонейтральных условиях внешней среды гомойотермные животные могут регулировать температуру тела, изменяя лишь величину теплоотдачи. Подобная терморегуляция включает в себя вазомоторные реакции, изменение позы (уменьшение или увеличение величины, участвующей в теплообмене поверхности тела), пиломоторные реакции (изменение теплоизолирующей эффективности шерстного по-

150