Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Полукпроводниковые приборы.ред.doc
Скачиваний:
56
Добавлен:
08.03.2015
Размер:
1.46 Mб
Скачать

2.3 Высокочастотный диод

Высокочастотным диодом называется диод, предназначенный для преобразования переменного (двухполярного) тока в постоянный (однополярный) ток высокой частоты. Частота тока, пропускаемая высокочастотным диодом на много выше частоты тока, пропускаемого выпрямительным диодом.

Высокочастотные диоды изготавливаются из германия или кремния, p–n переход имеет точечную конструкцию. Такая конструкция p–n перехода характеризуется барьерной ёмкостью небольшой величины (не более 1пФ). Это позволяет использовать диод для пропускания высокочастотных токов. Однако малая площадь контакта p–n перехода не позволяет рассеивать значительную мощность. Поэтому высокочастотные диоды менее мощные, чем выпрямительные и применяются в схемах с напряжением не выше нескольких десятков вольт при токе порядка десятков миллиампер.

Вольтамперная характеристика высокочастотного диода в общем виде повторяет вольтамперную характеристику выпрямительного диода (рисунок 1.10,а). Графическое обозначение высокочастотного диода (рисунок 1.10,б). Влияние температуры на величину обратного тока сказывается слабее, чем в плоскостных диодах – удвоение обратного тока происходит при приращении температуры на 15÷20˚С. Ниже названы основные электрические параметры высокочастотных диодов и их ориентировочные значения:

Iпр – прямой ток (десятки мА),

Iобр – обратный ток (единицы mкА),

Uобр – максимальное обратное напряжение (десятки В)

fmax – максимальная рабочая частота (сотни МГц),

Сб – ёмкость диода (доли – единицы пФ).

Широко применяются высокочастотные диоды в детекторах амплитудно и частотно модулированных сигналов, в различных устройствах преобразования высокочастотных сигналов.

2.4 Импульсный диод

Импульсным диодом называется полупроводниковый диод, имеющий малую длительность переходного процесса при отпирании p–n перехода и предназначенный для работы в импульсных схемах. В импульсных схемах токи и напряжения изменяются в течение малого промежутка времени, составляющего около 10-6 секунды, сохраняя затем неизменное значение в течение определённого времени (рисунок 2.5,б). На рисунке 2.5,а показана схема включения импульсного диода, на вход которой подаётся импульсный сигнал (рисунок 2.5,б).

Рисунок 2.5 – Схема включения импульсного диода (а),

входной сигнал (б) и ток через диод (в)

При положительном значении входного сигнала (0<t<t1) через диод протекает ток iд,, величина которого определяется значением Um и значениями прямого сопротивления диода и R. Ток создается основными носителями заряда. Не основные носители зарядов в это время находятся под действием тормозящего поля, создаваемым прямым напряжением (+Um). Происходит процесс накопления неравновесных неосновных носителей в области p–n перехода. Неравновесные носители – это электроны или дырки, не находящиеся в термодинамическом равновесии как по концентрации, так и по энергетическому распределению. При изменении полярности входного напряжения в момент времени t=t1 неравновесные неосновные носители оказываются под действием ускоряющего электрического поля. Они проходят через p–n переход и создают обратный ток Im обр, который в течение некоторого времени остается постоянным. Затем происходит рассасывание объемного заряда неосновных носителей, что ведет к уменьшению обратного тока до некоторой установившейся величины Iобр (t=t2). Время, в течение которого происходит рассасывание неосновных носителей, называется временем восстановления обратного сопротивления диода.

Рассмотренный процесс прохождения сигнала импульсной формы через диод характерен для любого p–n перехода. Очевидно, что в импульсном диоде p–n переход должен обладать малыми инерционными свойствами. Применяемые полупроводники должны иметь малую концентрацию неосновных носителей. Очевидно, на величину обратного тока влияет и величина барьерной емкости p–n перехода. Поэтому маломощные (низкотоковые) импульсные диоды выполняются по точечной конструкции.

Вольтамперная характеристика импульсного диода полностью совпадает с В.А.Х. p–n перехода (рисунок 1.5). Часть понятий электрических параметров импульсных диодов совпадают с понятиями электрических параметров выпрямительных диодов. Такие, как постоянное прямое напряжение Uпр, постоянное обратное напряжение Uобр, постоянный прямой ток Iпр, общая ёмкость диода Сд.

Ряд параметров характеризуют импульсные свойства диодов:

Iпр.и – прямой импульсный ток, это максимально допустимый ток в течении определённой длительности импульса. Его значение обычно на порядок превышает значение прямого тока;

tвос.обр – время восстановления обратного сопротивления диода

Графическое обозначение импульсного диода такое же, как и выпрямительного диода (рисунок 2.1,б).

Применяются импульсные диоды в импульсных схемах, в переключающих устройствах, при построении цифровых микросхем.