Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЖБК / ЖБК 1 курсовой / Мои лекции 1 сем.doc
Скачиваний:
381
Добавлен:
14.02.2015
Размер:
13.95 Mб
Скачать

3.7. Нормативные и расчётные сопротивления

Основной прочностной характеристикой арматуры является нормативное значение сопротивления растяжению Rsn, принимаемое в зависимости от класса арматуры по таблицам норм.

Расчётное значение сопротивления арматуры растяжению для предельных состояний первой группы определяются:

,

где - коэффициент надежности по арматуре, принимаемый равным:

1,1 – для арматуры классов А240, А300, А400;

1,15 – для арматуры класса А500;

1,2 – для арматуры класса В500.

Расчетные значения сопротивления арматуры растяжению для предельных состояний второй группы принимают равными соответствующим нормативным сопротивлениям.

Значения модуля упругости арматуры принимают одинаковыми при растяжении и сжатии и равными.

4. Свойства железобетона

4.1. Сцепление арматуры с бетоном

4.2. Усадка железобетона

4.3. Ползучесть железобетона

4.4. Влияние высоких температур на железобетон

4.5. Коррозия железобетона и меры защиты

1. Байков Сигалов

2. Бондаренко Суворов

3. СП 52 – 101 – 2003 Железобетонные конструкции без предварительного напряжения арматуры (Пособие)

4. СП 52 – 102 – 2004 Предварительно напряженные железобетонные конструкции (Пособие)

4.1. Сцепление арматуры с бетоном

Скольжению арматуры в бетоне препятствует сцепление между ними (сопротивление сдвигу). Надежное сцепление является основным фактором, обеспечивающим совместную работу арматуры и бетона в железобетоне и позволяющим ему работать под нагрузкой как единому монолитному телу. При отсутствии сцепления образование первой трещины влечет за собой возрастание удлинений на всем протяжении растянутой арматуры, что приводит к резкому раскрытию образовавшейся трещины, сокращению высоты сжатой зоны, снижению несущей способности.

В различных опытах сила сцепления арматуры с бетоном определялась сопротивлением скольжению забетонированного стержня при его выдергивании или выталкивании. Как показали опыты, сила сцепления меняется в широких пределах и в основном зависит от трех факторов:

  • склеивания арматуры с бетоном, благодаря клеящей способности цементного теста (адгезия);

  • сил трения, возникающих на поверхности арматуры благодаря зажатию стержней в бетоне при его усадке;

  • сопротивления бетона усилиям среза, возникающим из-за наличия неровностей и выступов на поверхности арматуры.

Наибольшее влияние на сцепление оказывает третий фактор – он обеспечивает около 75% от общей величины сцепления. Первый фактор оказывает наименьшее влияние – до 25% всей силы сцепления.

Арматура периодического профиля с сильно шероховатой поверхностью обладает более высоким и надежным сопротивлением скольжению благодаря зацеплению и заклиниванию ее выступов в бетоне. По сравнению с гладкими стержнями арматура периодического профиля обладает в 2-3 раза большей силой сцепления с бетоном.

Рис. 3.8. Зацепление выступов арматуры за бетон

Напряжение в бетоне под выступами арматуры при ее выдергивании может превосходить в 5-7 раз кубиковую прочность бетона, поэтому недопустимо снижение плотности бетона в зоне контакта его с арматурой. Наиболее надежное повышение сопротивления скольжению арматуры в бетоне достигается соответствующим конструированием арматуры: устройством крюков на концах гладких стержней, применением анкеров.

Сопротивление сдвигу растет с увеличением марки цемента, уменьшением В/Ц, с увеличением возраста бетона (влияние усадки).

По длине заделки стрежня напряжения сцепления распределяются неравномерно, при этом наибольшее напряжение не зависит от длины заделки.

Рис.3.9. Напряженное состояние арматуры и бетона при выдергивании арматуры

Сопротивление скольжению растянутой арматуры (на выдергивание) меньше, чем сопротивление скольжению сжатой арматуры (на выталкивание), что объясняется поперечными деформациями самого стержня. С увеличением диаметра стального стержня и повышением нормального напряжения в нем сила сцепления его с бетоном при растяжении уменьшается, а при сжатии – увеличивается.

Рис. 3.10. Влияние диаметра арматуры на напряжение

Надежное сцепление арматуры с бетоном, препятствующее сдвигу арматуры в бетоне, является основным фактором, обеспечивающим совместную работу арматуры и бетона в железобетоне.

Надежное сцепление арматуры с бетоном создается тремя основными факторами:

  1. сопротивление бетона усилиям смятия и среза, обусловленное выступами на поверхности арматуры (рис. 18), т.е. механическое зацепление арматуры за бетон (75% от общей величины сцепления). Сцепление рифленой арматуры в 2…3 раза выше, чем гладкой арматуры. Надежно самоанкеруются витые канаты;

  2. з

    Рис. 18. Сцепление арматуры

    периодического профиля с бетоном.

    а счет сил трения, возникающих на поверхности арматуры благодаря обжатию стержней бетоном при его усадке;

  3. склеивание (адгезия) поверхности арматуры с бетоном.

Распределение напряжений сцепления арматуры с бетоном по длине заделки стержня неравномерно (рис. 19). Наибольшие напряжения действуют вблизи заделки и не зависят от длины анкеровки стержня. В расчетах используют среднее напряжение сцепления, равное отношению усилия в стержнеN к площади заделки:

,

где u – периметр сечения стержня.

Рис. 19. Распределение напряжений

сцепления арматуры с бетоном.

Следовательно, длина зоны анкеровки арматуры увеличивается с возрастанием ее прочности и диаметра (т.к. из формулы видно, что напряжение сцепления увеличивается со снижением диаметра арматуры).

Соседние файлы в папке ЖБК 1 курсовой