Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сапромат Лекции.doc
Скачиваний:
62
Добавлен:
14.02.2015
Размер:
4.01 Mб
Скачать

Примем следующий порядок расчета.

1. Разлагаем все внешние силы на составляющие

P1x, P2x,..., Pnx и P1y, P2y,..., Pny.

2. Строим эпюры изгибающих моментов My и My. от этих групп сил.

   У кругового и кольцевого поперечного сечений все центральные оси главные, поэтому косого изгиба у вала вообще не может быть, следовательно, нет смысла в каждом сечении иметь два изгибающих момента Mx, и My а целесообразно их заменить результирующим (суммарным) изгибающим моментом (рис. 2)

,

который вызывает прямой изгиб в плоскости его действия относительно нейтральной оси п—п, перпендикулярной вектору Мизг. Эпюра суммарного момента имеет пространственное очертание и поэтому неудобна для построения и анализа. Поскольку все направления у круга с точки зрения прочности равноценны, то обычно эпюру Мизг спрямляют, помещая все ординаты в одну (например, вертикальную) плоскость. Обратим внимание на то, что центральный участок этой эпюры является нелинейным.

Рис.2. Формирование результирующего изгибающего момента

 

3. Строится эпюра крутящего момента Мz.

Наибольшие напряжения изгиба возникают в точках k и k/, наиболее удаленных от нейтральной оси (рис. 3),

.

где Wизг — момент сопротивления при изгибе.

В этих же точках имеют место и наибольшие касательные напряжения кручения

,

где Wр момент сопротивления при кручении.

а) эпюры напряжений б) распределение напряжений Рис.3. Напряженное состояние вала:

 

   Как следует из рис. 3, напряженное состояние является упрощенным плоским (сочетание одноосного растяжения и чистого сдвига). Если вал выполнен из пластичного материала, оценка его прочности должна быть произведена по одному из критериев текучести. Например, по критерию Треска—Сен-Венана имеем

.

Учитывая, что Wр=2 Wизг, для эквивалентных напряжений получаем

,

где —эквивалентный момент, с введением которого задача расчета вала на совместное действие изгиба и кручения, сводится к расчету на эквивалентный изгиб.

Аналогично для Мэкв по.критерию Губера—Мизеса получаем

Тогда условие прочности для вала из пластичного материала будет иметь вид

.

Для стержня из хрупкого материала условие прочности следует записать в виде

,

где Мэкв должен быть записан применительно к одному из критериев хрупкого разрушения. Например, по критерию Мора

где .

   Обратим внимание на особенности расчета при сочетании изгиба, растяжения и кручения стержня прямоугольного поперечного сечения (рис. 4.) Для выявления опасной точки здесь должны быть сравнены напряжения косого изгиба с растяжением в точке А, с эквивалентными напряжениями в точках В и С.

Рис.4. Модель расчета напряжений при сочетании кручения, растяжения и изгиба.

 

   Полученные соотношения приобретают крайнюю необходимость и востребованность при выполнении Вами курсового проекта по основам конструирования при расчете на прочность и жесткость валов передач.

Лекция № 30. Расчет балок переменного сечения.

Подбор сечений балок равного сопротивления.

   Все предыдущие расчеты относились к балкам постоянного сечения. На практике мы имеем часто дело с балками, поперечные размеры которых меняются по длине либо постепенно, либо резко.

Ниже рассмотрено несколько примеров подбора сечения и определения деформаций балок переменного профиля.

   Так как изгибающие моменты обычно меняются по длине балки то, подбирая ее сечение по наибольшему изгибающему моменту, мы получаем излишний запас материала во всех сечениях балки, кроме того, которому соответствует . Для экономии материала, а также для увеличения в нужных случаях гибкости балок применяют балки равного сопротивления. Под этим названием подразумевают балки, у которых во всех сечениях наибольшее нормальное напряжение одинаково и должно быть равно допускаемому.

Условие, определяющее форму такой балки, имеет вид

и

   Здесь М(х) и W(x) — изгибающий момент и момент сопротивления в любом сечении балки; W(х) для каждого сечения балки должен меняться пропорционально изгибающему моменту.

   Эти условия справедливы и для сечения с наибольшим изгибающим моментом; если обозначить — момент сопротивления балки в сечении с наибольшим изгибающим моментом , то можно написать:

(1)

   Покажем ход вычислений на примере. Рассмотрим балку пролетом l, защемленную концом А и нагруженную на другом конце силой Р (Рис.1). Выберем сечение этой балки в виде прямоугольника; задачу о надлежащем изменении момента сопротивления можно решать, меняя высоту или ширину балки или тот и другой размер вместе.

Рис.1. Расчетная схема балки равного сопротивления

 

   Пусть высота балки будет постоянной , а ширина переменной—. Момент сопротивления в сечении на расстоянии х от свободного конца будет , а изгибающий момент ; момент сопротивления опорного сечения , a наибольший изгибающий момент в опорном сечении . В расчете имеют значения лишь абсолютные величины М(х) и

По формуле (1) получаем:

откуда

т. е. ширина меняется по линейному закону в зависимости от х. При ширина равна .

   Вид балки в фасаде и плане показан на Рис.1. Такое очертание балки получается, если учитывать ее прочность только по отношению к нормальным напряжениям; ширина в сечении В обращается в нуль.

   Однако необходимо обеспечить прочность и по отношению к касательным напряжениям. Наименьшая ширина балки, требуемая этим условием, определится из уравнения

или, так как

   Таким образом, исправленное очертание балки предопределяет минимальный размер ширины и утолщение свободного края консоли.