Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ботан.docx
Скачиваний:
161
Добавлен:
12.02.2015
Размер:
717.8 Кб
Скачать

1. Корневые системы. Вторичные изменения корня.

Подобно побегу , корень способен к ветвлению. В результате образуется корневая система, под которой понимают совокупность корней одного растения. Характер корневой системы определяется соотношением роста главного, боковых и придаточных корней.

Первый корень семенного растения развивается из зародышевого корешка . Он называется главным. У двудольных и голосеменных от главного корня отходят боковые корни первого порядка, в свою очередь дающие начало боковым корням второго порядка и т.д. В результате формируется стержневая или ее разновидность - ветвистая корневая система. Все боковые корни семенных растений закладываются эндогенно, т.е. внутри корня предшествующего порядка, и развиваются из перицикла . У однодольных зародышевый корешок живет относительно короткое время, в силу чего главный корень не развивается. Вместо него при основании побега образуются так называемые придаточные корни (придаточные корни могут возникать также на листьях), более или менее сходные между собой по размерам. Они, в свою очередь, могут давать боковые корни. Корневая система, сформированная подобным образом, получила название мочковатой. Придаточные корни также закладываются эндогенно.

У многих двудольных главный корень также нередко отмирает и заменяется системой придаточных корней, отходящих от корневища.

У однодольных и папоротников первичная структура корня сохраняется в течение всей жизни и вторичные ткани не возникают. Иначе обстоит дело с голосеменными и двудольными , у которых в дальнейшем происходят вторичные изменения и в конечном итоге формируется вторичная структура корня, при которой радиальное расположение проводящих тканей заменяется коллатеральным. Образование вторичной структуры корня связано прежде всего с деятельностью камбия , который обеспечивает рост корня в толщину. Камбий возникает из тонкостенных паренхимных клеток в виде разобщенных участков с внутренней стороны тяжей флоэмы между лучами первичной ксилемы . Камбиальную активность вскоре приобретают и некоторые участки перицикла , располагающиеся кнаружи от лучей первичной ксилемы. В результате образуется непрерывный камбиальный слой

2. Опыление и оплодотворение у покрытосеменных растений. Эндосперм и зародыш семени.

Опыление

Опыление - необходимое условие оплодотворения, происходящего в цветке. Суть опыления состоит в переносе пыльцы из пыльников на рыльце пестика.

Различают два принципиально различных типа опыления: самоопыление и перекрестное. При самоопылении пыльца переносится на рыльце пестика в пределах данного цветка или данной особи.

Самоопыление, особенно постоянное, рассматривается как вторичное явление, вызванное неблагоприятными условиями среды, т.е. неблагоприятными для перекрестного опыления; оно выполняет страхующую роль. Постоянное самоопыление трактуется как тупик эволюционного развития. Самоопыление чаще бывает у однолетников с коротким жизненным циклом, растущих в неблагоприятных экологических условиях на сухих и бедных почвах (пастушья сумка, клевер шершавый, клевер скученный). Такой вид опыления позволяет им быстрее восстановить численность вида. Кроме того, самоопыление характерно для растений, где невозможно перекрестное опыление. Этот вид опыления осуществляется, когда тычинки постоянно соприкасаются с пестиком (копытень, седмичник). Чаще самоопыление наблюдается у растений темнохвойного леса (брусника, черника). У кислицы, растущей в темнохвойном лесу, где большая влажность воздуха и почти нет опыляющих насекомых, опыление происходит, когда цветки еще в бутоне, - клейстогамия.

Перекрестное опыление - основной тип опыления цветковых растений. Оно биологически более совершенно. У растений есть специальные устройства морфологического и физиологического характера, предотвращающие или ограничивающие самоопыление и, следовательно, способствующие перекрестному опылению. К ним относится двудомность растений, т. е. разновременное созревание тычинок или пестиков: протандрия - раньше созревает пыльца (колокольчики, гвоздики, сложноцветные), протогиния - раньше созревает рыльце (крестоцветные, розоцветные).

Различают два вида перекрестного опыления: биотическое и абиотическое.

Биотическое опыление: энтомофилия, орнитофилия, хироптерофилия. Абиотическое - анемофилия, гидрофилия. При перекрестном опылении цветки имеют приспособления для опыления агентами живой и неживой природы.

Анемофилия - опыление с помощью ветра. Оно представляет собой адаптацию цветковых растений к неблагоприятным условиям, которые ограничивают возможность биотического опыления. Ветроопыляемые растения цветут до распускания листьев (лещина, береза), их цветки без околоцветника, без запаха и окраски (невзрачные), но имеют перистое рыльце. Цветки собраны в соцветия (сережка, кисть, колос). Тычинки свободно свисающие.

Энтомофилия - опыление с помощью насекомых. Насекомые посещают цветки для сбора пыльцы, нектара, а иногда в поисках убежища, отложения яиц, поиска партнера. Растения для опыления насекомыми имеют ряд приспособлений. Так, мак, пион, шиповник, зверобой образуют много пыльцы и этим привлекают жуков, которые питаются пыльцой. Нектар растения выделяют в разном количестве и в разное время дня, что помогает насекомым находить его в любое время. В привлечении насекомых большое значение имеют запах и окраска растений. Цветовая гамма цветков разнообразна, и восприятие цвета у насекомых отличается от восприятия человека

Оплодотворение

Процессу оплодотворения предшествует прорастание пыльцевого зерна на рыльце. Микроспора еще внутри пыльника прорастает и ее ядро подвергается митотическому делению, в результате которого образуется маленькая репродуктивная клетка и большая вегетативная. Попав на пестик, вегетативная клетка вытягивается в пыльцевую трубку, а ядро генеративной клетки делится и дает две мужские клетки спермии. На следующем этапе пыльцевая трубка проникает в зародышевый мешок, разрывается, и из нее выходят гаметы. Один спермий сливается с яйцеклеткой (зигота диплоидна), другой - со вторичным ядром. Такое оплодотворение называется двойным. Это выдающееся открытие принадлежит русскому ученому С. Г. Навашину. Из оплодотворенной клетки (зиготы) развивается зародыш будущего растения. Из вторичного ядра зародышевого мешка - эндосперм семени, иными словами, семя образуется из семяпочки после оплодотворения. Из покровов семяпочки развивается кожура семени, из зиготы - многоклеточный зародыш, из триплоидной клетки - запасающая ткань эндосперм. Возможно, возникновение в семени запасающей ткани из нуцеллуса (центральной части семяпочки). Эту ткань называют периспермом.

8БИЛЕТ