Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Билет №46

.docx
Скачиваний:
34
Добавлен:
11.02.2015
Размер:
113.35 Кб
Скачать

1. Скоростные и механические характеристики системы ТП-Д.

Скоростные хар-ки ДПТ НВ описываются уравнением:

Внешняя хар-ка ТП в режиме непрерывного тока:

получено из схемы замещения ТП

В зоне прерывистых токов:

р –число пульсаций выпр. ЭДС.

При -имеет место гранично-непрерывный режим, для которого

при пренебрежении падения напряжения на активном сопротивлении питающей фазы. Механические и скоростные характеристики ТП-Д отличаются от внешних хар-ик преобразователя большим наклоном.

2. Принципы построения систем векторного частотно- токового управления АД

Система векторного управления асинхронным электроприводом в наиболее общем случае должна решать задачи регулирования и стабилизации момента и скорости двигателя.

Формирование момента АД в соответствии возможно за счет воздействий на абсолютные значения векторов потокосцеплений,токов и фазовых сдвигов между ними. От того, какие вектора выбраны в качестве регулируемых будет зависеть принцип построения и техническая реализация системы управления электроприводом.

а) б)

Рис.7.1. Векторные диаграммы АД при ориентации по потокосцеплениям  (а) и 2 (б)

Если воспользоваться уравнением , то в качестве регулируемых будут выбраны вектора и . Анализ рис. 7.1, а позволяет интерпретировать АД как эквивалентную машину постоянного тока. Если ротор АД сопоставить якорю двигателя постоянного тока (ДПТ), а статорные обмотки – обмоткам возбуждения ДПТ, то составляющая тока статора I , синфазная потокосцеплению , может интерпретироваться как ток возбуждения ДПТ, составляющая I – как ток его компенсационной обмотки, составляющая I – как поперечная составляющая поля якоря ДПТ , составляющая I– как размагничивающая продольная реакция якоря. Потокосцепление определяется током и, следовательно, в системе координат x, y, связанной с вектором потокосцепления , составляющие I и I равны и имеют разные знаки, а встречно направленные составляющие Iи I определяют модуль потокосцепления

В приведенной интерпретации отличительные особенности АД от ДПТ в том, что на статоре АД нет отдельно эквивалентной обмотки возбуждения и компенсации поперечной реакции якоря (эти обмотки как бы совмещены), а ось х, связанная с потокосцеплением вращается относительно статора со скоростью . Эти особенности формирования момента определяют основные положения при технической реализации системы векторного управления. Так вектор может быть определен измерением с помощью датчиков Холла его составляющих  и  на неподвижные относительно статора оси и , как . При этом модуль потокосцепления , а угол между осями ,  неподвижной системы координат и осями x, y системы координат, вращающейся со скоростью 0.эл = arc cos ( / ). Составляющие вектора в системе координат , могут быть определены через токи фаз статора IА, IВ, IС как ; .

В системе координат x, y проекции вектора тока I1 и I1 определяются как

; . (7.1)

Они представляются сигналами постоянного тока и не зависят от частоты питания АД. Учитывая это, система векторного управления может строиться аналогично системам управления двигателями постоянного тока, где составляющая I1x тока статора определяет потокосцепление  АД (магнитный поток ДПТ), а составляющая I1у является моментной составляющей тока статора (подобна току якоря ДПТ).

Таким образом система векторного управления с опорным вектором потокосцепления должна иметь два канала управления: канал управления модулем и канал управления угловой скорости ротора АД. По аналогии с ДПТ канал управления скоростью должен содержать внутренний контур управления составляющей тока статора I, эквивалентной току якоря ДПТ, и внешний контур управления угловой скоростью ротора. Канал управления модулем потокосцепления должен содержать контур управления составляющей тока статора I1x, эквивалентной току возбуждения ДПТ. На этот канал оказывает влияние и составляющая тока статора I1у в виде трансформаторных ЭДС, пропорциональных рассеяниям статора и ротора.

Важной особенностью системы управления с опорным вектором потокосцепления  является возможность его прямого измерения с помощью датчиков, установленных в воздушном зазоре АД. Подобные системы имеют более высокие показатели качества управления по сравнению с системами, где используется косвенный (расчетный) путь определения сигналов обратных связей.

При стабилизации потокосцепления ротора (при 2 =const) механические характеристики АД подобны характеристикам ДПТ независимого возбуждения. Поскольку теория и технические решения замкнутых систем управления электроприводом с ДПТ независимого возбуждения достаточно апробированы, то понятна привлекательность применения систем векторного управления с управлением по потоку ротора.

Векторная диаграмма токов и потокосцеплений АД при стабилизации потокосцепления ротора приведена на рис. 7.1, б. Здесь ось х совмещена с вектором . При этом ;

; I'2х = 0; I'2у = - 2 sа / R'2 , т.е. в установившемся режиме вектор тока ротора перпендикулярен вектору , а составляющие тока статора ; ,

где - электромагнитная постоянная времени цепи ротора.

В двигательном режиме (sa 0 ) вектор тока статора опережает вектор на угол .

При этом вектор тока ротора отстает от на угол 90 эл. град. и при 2 = const модуль тока ротора меняется пропорционально абсолютному скольжению.

Конец вектора скользит вдоль прямой 2, перпенд вектору (рис. 7.1, б). При этом составляющая I1x определяет потокосцепление 2 , а I1у компенсирует влияние на него реакции ротора.

Результирующая составляющая токов статора и ротора по оси у создает составляющую потокосцепления . При этом конец вектора будет скользить по прямой 3, перпендикулярной вектору . Аналогично годограф вектора характеризуется прямой 4 (рис. 7.1, б).

В соответствии с уравнением системы электромагнитный момент АД определяется взаимодействием ортогональных составляющих потокосцепления ротора 2 = 2х = L I1x и тока статора I1y . Таким образом, при стабилизации 2 , как и при стабилизации  , система векторного управления будет подобна системам управления двигателями постоянного тока, где составляющая I1x тока статора определяет потокосцепление 2 АД (магнитный поток ДПТ), а составляющая I1у является моментной составляющей тока статора (подобна току якоря ДПТ).

3. Требования предъявляемые к ЭП механизмов подъема лифтов и подъемников.

  1. Абсолютная надежность - все меры безопасности

  2. Простота обслуживания и управления

  3. Диапазон регулирования скорости движения, зависит от типа лифта D = (1 – 10)

  4. Комфортное ускорение кабины < 9 м/с2 для больниц 1 м/с2

- Ограничение производной ускорения (рывок) (3 – 10) м/с2

- Точность останова кабины. Для больницы отклонения пола кабины от этажа не более 10-15 мм. Для обычных лифтов 30 мм. Скиповые шахтные подъемники (250-300)мм. Клетьевые подъемники (100 – 200)мм.

  1. Ошибка точности останова находится:

V0 – нач. скорость торможения

F0 – Тормозное усилие

m0 – средняя масса движущейся массы

t0 – среднее время срабатывания аппаратуры, приводящей ЭП в режим торможения

- отклонение соответствующей величины

Сильнее всего влияет на точность останова начальная скорость. Поэтому во всех лифтах и подъемниках есть узлы понижающие скорость при приближении к этажной площадке.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]