Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
(никита)KUL_T_KL_EKZAMEN.docx
Скачиваний:
33
Добавлен:
21.09.2022
Размер:
189.87 Кб
Скачать

12. Лабораторные ферментеры. Их назначение, типы, конструкция и области применения.

Ферментёр – аппарат для глубинного выращивания (культивирования) микроорганизмов в питательной среде в условиях стерильности, интенсивного перемешивания, непрерывного продувания стерильным воздухом и постоянной температуры. В лабораторной практике ферментеры применяются для ведения научно- исследовательских работ или отработки технологии массового культивирования.

В общем случае ферментер состоит из культивационного сосуда, насосов и соединительных трубопроводов (для подачи питательной среды, газов, инокулята и отбора продукта), измерительных приборов и регуляторов, управляющих температурой среды в сосуде, ее рН, окислительно-восстановительным потенциалом и другими параметрами.

В лабораторной практике наиболее часто применяются ферментеры с емкостью сосудов от 1 до 20 л, для отработки технологий – от 30 до 400 л. Во всех случаях питательной средой заполняется не более 75 % объема сосуда. Части ферментеров, контактирующие с питательной средой (сосуды, соединительные трубопроводы, насосы и др.), изготавливаются из биологически пассивных, химически стойких материалов, позволяющих производить стерилизацию насыщенным водяным паром (качественная нержавеющая сталь, силиконовая резина).

Сосуды ферментеров имеют цилиндрическую (реже коническую) форму. В них размещены датчики температуры, рН, кислорода, а также система для аэрации питательной среды, производимой барботированием газов (подача газов снизу через барботер) через питательную среду или сочетанием продувки газов с механическим перемешиванием среды. При использовании механических мешалок их соединение с приводным двигателем производится при помощи магнитных муфт, что снижает риск загрязнения питательной среды.

Помимо механического и пневматического перемешивания используются также системы циркуляционного (гидродинамического) перемешивания направленным током жидкости по замкнутому контуру при помощи насосов. Особое внимание уделяется борьбе с избыточным пенообразованием, так как если не препятствовать этому, пена смачивает фильтры для стерилизации воздуха, что приводит к загрязнению культуры посторонней микрофлорой, уменьшению полезного объема биореактора, а также выходу пены наружу.

Контроль пенообразования осуществляется путем введения в сосуд специального датчика. Для борьбы с избыточным пенообразованием используется механическое и химическое пеногашение. При механическом пеногашении лопасти пеногасителя размещаются на валу мешалки. При химическом пеногашении в крышке сосуда предусматривается специальный ввод для реагента гашения.

13. Глубинное культивирование клеточных и бактериальных культур.

Глубинный метод культивирования является более совершенным по сравнению с поверхностным. При этом микроорганизмы растут и развиваются во всем объеме питательной среды, а не только на ее поверхности. Осуществляют его, применяя жидкие питательные среды.

Совокупность остатков питательной среды, растущих в ней микроорганизмов и продуктов их жизнедеятельности, образующихся при глубинном культивировании, называется культуральной жидкостью.

При культивировании аэробных микроорганизмов необходимо обеспечить большую поверхность соприкосновения питательной среды с кислородом воздуха, так как при глубинном культивировании в жидких средах микроорганизмы используют растворенный в среде кислород. Вместе с тем растворимость кислорода в воде невелика, поэтому для обеспечения роста аэробных микроорганизмов в толще среды, ее необходимо постоянно аэрировать - подводить кислород во всю толщу жидкой среды. В результате питательная среда насыщается кислородом воздуха и создаются благоприятные условия для развития аэробов.

В лабораторной практике способ глубинного культивирования реализуется путем использования специальных установок – качалок, обеспечивающих встряхивание или вращение колб и пробирок со скоростью 100-200 об/мин и более. Чем больше скорость вращения, тем больше поверхность соприкосновения среды с воздухом и выше насыщение ее кислородом. Помимо перемешивания, аэрировать питательную среду можно продуванием (барботированием) через ее толщу стерильного воздуха. Этот способ также используется в лабораторных исследованиях, но особенно широкое применение он нашел в промышленной микробиологии, где его применяют при получении микробной биомассы, в производстве антибиотиков, ферментов, витаминов, кислот.

Глубинное культивирование в ферментерах имеет ряд преимуществ по сравнению с твердофазным статическим способом:

-автоматически поддерживаются все необходимые параметры: температура, рН среды, степень аэрации, скорость работы ме­шалки и пр.;

-постоянный контроль содержания в культуральной среде ос­новных элементов питания; -культуральная система периодически пополняется свежей пита­тельной средой; -постоянно осуществляется микробиологический контроль с це­лью предотвращения инфицирования и гибели культур; - контроль активности роста и деления клеток; - контроль образования БАВ.

Необходимо отметить, что для получения БАВ может использовать­ся не только биомасса клеток, но и культуральная среда. В некоторых случаях получаются штаммы и клеточные линии, почти полностью выделяющие БАВ в культуральную среду, что значительно облегчает процесс их выделения из такого специфического вида сырья.