Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

279528

.pdf
Скачиваний:
19
Добавлен:
09.02.2015
Размер:
7.85 Mб
Скачать

280

10. Иммунная система

10.4. Развитие иммунитета в онтогенезе

В отличие от системы специфического иммунитета факторы неспецифической защиты у новорожденных выражены хорошо. Они формируются раньше специфических и берут на себя основную функцию защиты организма плода и новорожденного. В околоплодных водах и в крови плода отмечается высокая активность лизоцима, которая сохраняется до рождения ребенка, а затем снижается. Способность к образованию интерферона сразу после рождения высока, на протяжении года она снижается, но с возрастом постепенно увеличивается и достигает максимума к 12-18 годам.

Новорожденный получает от матери значительное количество гам- ма-глобулинов. Эта неспецифическая защита оказывается достаточной при первоначальном столкновении организма с микрофлорой окружающей среды. К тому же у новорожденного отмечается «физиологический лейкоцитоз» — количество лейкоцитов в 2 раза выше, чем у взрослого, как естественная подготовка организма к новым условиям существования. Однако многочисленные лимфоциты новорожденных представлены незрелыми формами и не способны синтезировать необходимое количество глобулинов и интерферона. Фагоциты тоже недостаточно активны. В результате этого детский организм отвечает на проникновение микроорганизмов генерализованным воспалением. Часто такую реакцию вызывает бытовая микрофлора, безопасная для взрослого. В организме новорожденного специфические иммунные системы не сформированы, иммунной памяти нет, неспецифические механизмы тоже еще не созрели. Поэтому столь важно кормление материнским молоком, в котором содержатся иммунореактивные вещества. В возрасте от 3 до 6 месяцев иммунная система ребенка уже реагирует на вторжение микроорганизмов, но практически не формируется иммунная память. В это время неэффективны прививки, заболевание не оставляет после себя стойкого иммунитета. Второй год жизни ребенка выделяется как «критический» период в развитии иммунитета. В этом возрасте расширяются возможности и повышается эффективность иммунных реакций, однако система местного иммунитета еще недостаточно развита и дети чувствительны к респираторным вирусным инфекциям. В возрасте 5-6 лет созревает неспецифический клеточный иммунитет. Формирование собственной системы неспецифической гуморальной иммунной защиты завершается на 7-м году жизни, в результате чего заболеваемость респираторными вирусными инфекциями снижается.

11

ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ФУНКЦИИ ОРГАНИЗМА И ЕЕ ВОЗРАСТНЫЕ ОСОБЕННОСТИ

11.1. Особенности гормональной регуляции функций

Регуляция функций в организме человека осуществляется нервным

игуморальным путем. Нервная регуляция обусловлена скоростью проведения нервного импульса, гуморальная — скоростью движения крови по сосудам или скоростью диффузии молекул химических веществ в межклеточную жидкость. Нервная регуляция более быстрая, поэтому она является ведущей в организме, но и у нее есть свои недостатки. Нервный импульс приводит лишь к кратковременному изменению поляризации мембраны клетки. Для долговременного воздействия нервные импульсы должны поступать один за другим, что приводит к утомлению нервных центров, в результате чего нервное влияние ослабевает. При гуморальном воздействии информация поступает ко всем клеткам, хотя воспринимается лишь той клеткой, которая имеет специализированный рецептор. Информационная молекула, достигнув такой клетки, прикрепляется к ее мембране, изменяет ее свойства и остается там до тех пор, пока не достигается ожидаемый результат, после чего специальные механизмы разрушают эту молекулу. Таким образом, если управляющее влияние должно быть срочным

икратковременным — преимущество за нервной регуляцией, а если продолжительным — за гуморальной. Поэтому в организме существуют и нервный, и гуморальный способы регуляции, которые действуют согласованно в зависимости от условий.

Среди биологически активных веществ для физиологической регуляции функций организма наиболее важны медиаторы, гормоны, ферменты и витамины. Медиаторы представлены веществами небелковой природы, которые выделяются окончаниями нервных клеток в результате прохождения нервного импульса. Чаще всего в качестве медиатора выступают ацетилхолин, адреналин, норадреналин, дофамин и гамма-аминомасляная кислота. После прекращения действия

282

11. Гормональная регуляция функций организма и ее возрастные особенности

медиатор разрушается специальным ферментом. Истощение запасов медиатора в пресинаптической мембране может служить причиной нарушения проведения нервного импульса. Гормоны представляют собой высокомолекулярные вещества, вырабатываемые железами внутренней секреции для управления активностью других гормонов

исистем органов. Гормоны могут быть двух типов: прямого действия

итропными. Гормоны прямого действия непосредственно воздействуют на соматические клетки, изменяя их метаболизм и функциональную активность. Тропные гормоны воздействуют на железы внутренней секреции, ускоряя или замедляя выработку собственных гормонов, которые уже в свою очередь действуют на соматические клетки. Ферменты — это вещества, влияющие на скорость биохимических реакций внутри клетки и в полостях тела. Витамины непосредственно воздействуют на метаболические процессы клетки.

Впоследнее время открыты новые классы веществ, которые обладают высокой биологической активностью и участвуют в регуляции физиологических функций и поведения человека. Например, эндорфины, выполняющие функции внутреннего наркотика для создания ощущения радости и удовлетворенности при психических переживаниях и активной деятельности (занятиях спортом), феромоны, обладающие сильным ароматом и играющие важную роль в межличностном общении и половом поведении.

Многие органы, не будучи железами внутренней секреции, имеют в своем составе железистые клетки, которые продуцируют небольшое количество гормонов, влияющих на самочувствие. Такие гормоны вырабатываются в почках, желудке, сердце и других органах. Еще один класс биологически активных веществ, вырабатываемых нежелезистыми клетками большинства органов, — тканевые гормоны, которые в отличие от истинных гормонов выделяются не в кровь, а в межклеточную жидкость. Эти вещества передают соседним клеткам и тканям информацию о состоянии клеток, в которых они синтезируются. Такой взаимный обмен информацией между клетками

итканями позволяет им согласовывать метаболическую активность

иподдерживать гомеостаз.

Действие биологически активных веществ на клетки и ткани зависит от их химической природы. Тиреоидные гормоны легко проникают через клеточную мембрану и направляются в ядро, где включаются в регуляцию активности генов. Стероидные гормоны тоже проникают через мембрану, но благодаря взаимодействию с мембранными

11.1. Особенности гормональной регуляции функций

283

рецепторами. Катехоламины внутрь клетки не проникают, а химически связываются с мембранными рецепторами. Многие гормоны являются крупными белковыми молекулами, которые не могут проникнуть внутрь клетки. Они прикрепляются к клеточным мембранам, изменяют их проницаемость и таким образом влияют на внутриклеточный метаболизм. Витамины в большинстве случаев являются молекулами небольших размеров, проникают через клеточную мембрану и встраиваются во внутриклеточные биохимические процессы. Ферменты, как многие гормоны, не способны проникать внутрь клетки, они циркулируют в крови или в межклеточной жидкости, где и оказывают свое каталитическое действие.

Молекулы биологически активных веществ имеют определенный срок жизни, после которого утилизируются. Крупные информационные макромолекулы существуют от нескольких минут до нескольких часов, молекулы средних размеров — в течение суток, а мелкие молекулы — в течение нескольких суток.

Биологически активные вещества влияют не на все клетки, а только на клетки-мишени, на мембранах которых есть специальные активные места — рецепторы. Последние механически и химически приспособлены для соединения и удержания молекулы гормона. Если рецепторы отсутствуют, гормон не может прикрепиться к мембране и никакого действия на метаболизм клетки не оказывает.

Скорость образования гормонов обусловлена влиянием нервных центров, управляющих соответствующей железой, и других желез внутренней секреции. Секреция гормонов зависит также от возраста. Например, гипофиз вырабатывает гормон роста в наибольшем количестве у детей в период интенсивного роста костей. По скорости продукции гормоны делятся на две группы: долговременные и адаптивные, или гормоны быстрого реагирования. Продукция гормонов первой группы меняется плавно и подолгу остается на одном уровне. Эти гормоны определяют уровень метаболизма в долговременном плане (гормон роста, тироксин, паратгормон, половые железы). Адаптивные гормоны выбрасываются в кровь в результате резкого изменения ситуации в течение нескольких минут или секунд (адреналин).

Кроме изменения скорости продукции гормона в организме меняется и чувствительность органов-мишеней. Чем больше количество активных мест на мембране клетки для прикрепления молекул гормона, тем выше чувствительность данной ткани к гормону. Иногда уровень гормона в крови высок, но чувствительность органов-мишеней

284

11. Гормональная регуляция функций организма и ее возрастные особенности

низкая и реальное физиологическое действие гормона не проявляется. Например, у детей первого года жизни содержание половых гормонов высокое, но клетки половых желез еще не приспособлены к взаимодействию с молекулами гормонов, поэтому процесс полового созревания не происходит.

Нервная и гуморальная системы регуляции объединяются в головном мозге на уровне гипоталамуса — образования, которое является и нервной мозговой структурой, и эндокринной железой. Его нервные клетки соединены с центрами головного мозга, управляющими деятельностью всех внутренних органов. Но эти же клетки вырабатывают биологически активные вещества гормонального типа — нейропептиды — для регуляции активности гипофиза, называемые рилизинг-факто- рами, или либеринами. При их поступлении в гипофиз его железистые клетки выбрасывают накопленные ими гормоны в кровяное русло,

имеханизм эндокринной регуляции начинает действовать. Кроме того, в гипоталамусе вырабатываются статины — вещества, тормозящие высвобождение гормонов клетками гипофиза. Секреторные клетки гипофиза лишены собственной иннервации, поэтому его активность регулируется только с помощью химических веществ гипоталамуса.

Внастоящее время установлено, что нервные клетки во многих отделах головного мозга, а не только гипоталамуса, способны вырабатывать нейропептиды. Среди последних были обнаружены и давно известные гормоны и неизвестные вещества, например эндорфины

иэнкефалины, влияющие на активность нервных центров и формирующие настроение человека. Кроме того, было установлено, что в каждой ткани есть клетки, выполняющие гормональные функции. Они выбрасывают гормоны, необходимые для регуляции процессов, происходящих в этих же тканях. В результате была сформулирована концепция диффузной нейроэндокринной системы. Ее смысл состоит в том, что одни и те же вещества — нейропептиды или гормоны — могут вырабатываться как железистыми, так и нервными клетками. Такая двойная продукция гормонов обеспечивает двойной контроль

исовмещение нервного и гуморального воздействия.

11.2. Классификация желез

Органы, специально предназначенные для выработки биологически активных веществ, называются железами. Железы, выделяющие свои секреты в кровь или лимфу, относятся к железам внутренней

11.2. Классификация желез

285

секреции (эндокринным), на поверхность кожи или в одну из полостей — к железам внешней секреции (экзокринным).

Эндокринные железы (надпочечники, гипофиз, поджелудочная, щитовидная, паращитовидная, половые и другие железы) участвуют в регуляции физиологических функций и гомеостаза (рис. 44). Их гормоны действуют на клетки и ткани других органов. Экзокринные железы участвуют в регуляции межвидовых или внутривидовых взаимоотношений, так как их секрет воздействует информационно или метаболически на другие организмы (сальные, потовые, слезные, половые и некоторые другие железы). Некоторые железы выполняют и эндокринную, и экзокринную функции (поджелудочная, половые железы).

Эндокринология — наука о железах внутренней секреции, не имеющих выводных протоков и выделяющих секрет в кровь и лимфу.

Рис. 44. Эндокринные железы в теле человека:

1 — эпифиз; 2 — гипофиз; 3 — паращитовидная железа; 4 — щитовидная железа; 5 — надпочечники; 6 — панкреотические островки; 7 — яичник; 8 — яичко

286 11. Гормональная регуляция функций организма и ее возрастные особенности

Началом изучения строения и функций желез внутренней секреции считается 1849 г. и работы немецкого физиолога А. Бертольда. Эти железы вырабатывают и выбрасывают в кровь специфические вещества, которые английские физиологи У. Бейлисс и Э. Старлинг назвали гормонами. Гормоны являются биологически активными веществами различной химической природы. В настоящее время изучено около 30 гормонов, и все они имеют общие свойства. Во-первых, физиологический эффект вызывается минимальным количеством гормона. Во-вторых, гормоны отличаются избирательностью действия, т.е. онидействуют на орган —мишень для данного гормона. В-третьих, они неустойчивы и быстро разрушаются в организме.

Гормоны вызывают изменение функций органов различными путями. Они выполняют роль переносчиков информации, передавая сигналы о происходящих изменениях от данного органа к другому. Кроме того, гормоны действуют путем ограничения амплитуды колебаний того или другого физиологического показателя. При этом обычно участвуют два гормона. Один из них «следит» за верхней, другой — за нижней границей показателя, таким образом удерживая его в физиологических границах. Эти гормоны называются регуляторами-огра- ничителями (например, инсулин и глюкагон).

Гормоны действуют по принципу отрицательной обратной связи. Они участвуют в регуляции гомеостаза, обмена веществ, влияют на рост, дифференцировку, размножение, обеспечивают ответную реакцию организма на изменения внешней среды. Для всех желез внутренней секреции характерно хорошо развитое кровоснабжение и лимфоток, что способствует быстрому попаданию гормонов в кровь и лимфу.

Высшим центром регуляции эндокринных функций является гипоталаламус, в состав которого входит более 30 пар ядер. Он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему, кодирует нервные и гуморальные механизмы регуляции функций внутренних органов.

По происхождению все эндокринные железы делятся на три группы: энтодермальные (щитовидная и паращитовидные железы, вилочковая железа, островковый аппарат поджелудочной железы), мезодермальные (корковое вещество надпочечников, половые железы), эктодермальные (гипофиз и эпифиз, мозговое вещество надпочечников, параганглии и клетки диффузной эндокринной системы). Кроме того, эндокринные железы делятся на зависимые и независимые от передней доли гипофиза. К первым относятся щитовидная железа,

11.3. Строение и функции желез внутренней секреции

287

корковое вещество надпочечников, половые железы. Остальные железы (мозговое вещество надпочечников, паращитовидные железы, панкреатические островки поджелудочной железы, параганглии) не подчинены непосредственному влиянию передней доли гипофиза. К железам внутренней секреции относят также одиночные гормонообразующие клетки (диффузная эндокринная система).

11.3. Строение и функции желез внутренней секреции

Гипофиз

Гипофиз является важнейшей железой внутренней секреции. Располагается он в гипофизарной ямке турецкого седла клиновидной кости. Отросток твердой мозговой оболочки — диафрагма седла — отделяет гипофиз от полости черепа. Воронка соединяет гипофиз с гипоталамусом. Снаружи гипофиз покрыт соединительнотканной капсулой. Размеры его (10-17) х 16 х (5-10) мм, масса у мужчин около 0,5—0,6 г, у женщин 0,6—0,7 г. Будучи анатомически единым, гипофиз делится на две доли. Передняя доля (аденогипофиз) крупнее (70-80 % всей массы гипофиза) и состоит из дистальной, бугорной и промежуточной частей. В задней доле (нейрогипофиз) различают нервную часть и воронку.

Функции, выполняемые гипофизом, обусловливают особенности его кровоснабжения. Нижние гипофизарные артерии отходят от внутренних сонных артерий, верхние — от сосудов артериального круга. Верхние гипофизарные артерии направляются к серому бугру и воронке, где анастомозируют между собой и распадаются на капилляры, проникающие в ткань (первичная гемокапиллярная сеть), на них-то и заканчиваются разветвления аксонов нейросекреторных клеток гипоталамуса, образуя синапсы. Здесь нейросекрет выделяется в кровь. Из длинных и коротких петель этой сети формируются воротные венулы, которые идут по бугорковой части к передней доле гипофиза, где переходят в широкие синусоидные капилляры, образующие вторичную гемокапиллярную сеть, оплетающую группы секреторных клеток. Капилляры вторичной сети, сливаясь, образуют выносящие вены, по которым кровь (с гормонами передней доли) выносится из гипофиза. Задняя доля гипофиза кровоснабжается преимущественно за счет

288

11. Гормональная регуляция функций организма и ее возрастные особенности

нижних гипофизарных артерий. Между верхними и нижними гипофизарными артериями имеются длинные артериальные анастомозы.

Передняя доля гипофиза образована эпителиальными перекладинами, между которыми располагаются синусоидные капилляры. Одни клетки крупные и хорошо окрашиваются — это хромофильные аденоциты, другие мелкие и слабо окрашиваются — хромофобные аденоциты. Среди хромофильных различают ацидофильные клетки — округлые клетки средних размеров, в цитоплазме которых множество крупных гранул, а также крупные базофильные клетки, богатые глюкопротеидными включениями. Узкая промежуточная часть образована многослойным эпителием, среди клеток которого находятся пузырьки (псевдофолликулы). Задняя доля образована питуицитами, мелкими многоотростчатыми клетками и нервными волокнами, аксонами клеток супраоптического и паравентрикулярного ядер гипоталамуса, разветвления которых оканчиваются на капиллярах задней доли.

В передней доле гипофиза вырабатываются следующие гормоны: соматотропин (соматотропный гормон, или гормон роста), адренокортикотропный гормон, тиреотропин (тиреотропный гормон), гонадотропные гормоны (фолликулотропин, лютеотропин), лактогенный гормон (пролактин), меланоцитостимулирующий гормон (меланоцитогропин). Тропные гормоны регулируют секрецию гормонов гипофизозависимых желез по принципу обратной связи: при снижении концентрации определенного гормона в крови соответствующие клетки передней доли гипофиза выделяют тропный гормон, который стимулирует образование гормона именно этой железой. И наоборот, повышение содержания гормона в крови является сигналом для клеток гипофиза, которые отвечают замедлением секреции. В промежуточной части передней доли гипофиза вырабатываются липотропные факторы гипофиза, оказывающие влияние на мобилизацию и утилизацию жиров в организме. Нейросекреторные клетки ядер гипоталамуса вырабатывают вазопрессин и окситоцин, которые по разветвлениям аксонов клеток транспортируются в заднюю долю гипофиза, откуда разносятся кровью. Масса гипофиза у новорожденного — 0,12 г, в 10 лет — 0,25 г, а к 15 годам — 0,4 г. Максимального развития она достигает к 20 годам, а после 60 лет уменьшается.

Гормон роста секретируется не постоянно, а периодически, 3-4 раза вдень. Секреция его увеличивается во время голодания, тяжелой мышечной работы, глубокого сна (дети растут во сне). С возрастом она уменьшается, но сохраняется в течение всей жизни. У взрослых лю-

11.3. Строение и функции желез внутренней секреции

289

дей масса и число клеток не увеличиваются, но отработавшие клетки заменяются новыми. Гормон роста оказывает двойное воздействие на клетки организма: в клетках усиливается распад накопленных углеводов и жиров, а также их мобилизация для энергетического и пластического обмена, под влиянием выработанных печенью соматомединов усиливается рост костей, синтез белка и деление клеток. Гипосекреция гормона роста приводит к карликовости при сохранении нормального телосложения. Гиперсекреция гормона роста приводит к гигантизму. Если гиперсекреция начинается у взрослого человека после окончания процесса роста, развивается акромегалия. При этом непропорционально удлиняются конечности, кисти и стопы, нос, подбородок, язык и пищеварительные органы. Гормон роста начинает синтезироваться в гипофизе на 12-й неделе внутриутробного развития, а после 30-й недели его концентрация в крови плода в 40 раз выше, чем у взрослого человека. К моменту рождения она падает в 10 раз, но все равно остается очень высокой. До 7 лет уровень гормона роста в 2 раза выше, чем у взрослого человека, а затем начинает уменьшаться. Новое повышение его концентрации отмечается после 13 лет, достигая максимума к 15 годам, а к 20 годам она устанавливается йа уровне взрослого человека.

Адренокортикотропный гормон стимулирует функции клеток коркового вещества надпочечников, выделение кортикостероидов. Секреция его усиливается при различных эмоциональных состояниях.

Тиреотропный гормон усиливает выделение гормонов щитовидной железы.

Гонадотропные гормоны стимулируют функции половых желез. Фолликулотропин влияет на развитие фолликулов в яичниках, а в мужском организме — на образование сперматозоидов и развитие предстательной железы. Лютеотропин стимулирует секрецию андрогенов и эстрогенов.

Пролактин увеличивает продукцию прогестерона в желтом теле яичника и лактацию (продукцию молока).

Меланоцитотронин обусловливает окраску кожных покровов. Под его влиянием зерна меланина распределяются по всему объему кожных клеток. Пигментные пятна беременности и усиленная пигментация кожи стариков возникают в результат гиперфункции промежуточной доли гипофиза.

Вазопрессин участвует в регуляции мочеобразования, усиливая обратное всасывание воды из первичной мочи. При недостатке его

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]