Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Bachelor thesis

.pdf
Скачиваний:
8
Добавлен:
09.02.2015
Размер:
1.8 Mб
Скачать

Bachelor Thesis Presentation

Development of 3D Model of the Floating Diffusion Region of CCD Array Output Unit

Vadim Pogoretskiy

Microand Nanoelectronics Department

St-Petersburg Electrotechnical University “LETI” &

St-Petersburg Central Research Institute “Electron”

Supervisor: Mikhail Chetvergov PhD

St-Petersburg 2012

OUTLINE

1)Purpose of the work ………………………(3)

2)CCD-array applications …………………..(4)

3)real output unit ……………………………..(5)

4)3D modeling in SILVACO TCAD ……….(6)

5)Simulated results …………………………..(7)

6)Conclusion …………………………………….(11)

Purpose of the work:

Development of technological 3D model of the floating diffusion region (FDR) of output unit in SILVACO TCAD and analysis of characteristics.

Tasks:

1)Study of the operation of CCD-arrays.

2)Study of method of 3D modeling in SILVACO TCAD.

3)Design of technological 3D model of FDR.

4)Development of electrophysical 3D model of FDR.

5)Analysis of simulated results for different topology of FDR:

C-V characteristics.

Electrical field density and charge carriers distribution.

6)Development of recommendations to technologists for optimization of FDR topology.

3

CCD-array applications

Domestic equipment:

Digital photo and video cameras

Telefaxes and scanners

Input optic devices

Industry equipment:

Movement sensors

Microscopy in medical and bio areas

Biometrical technologies

Spacecraft orientation

Earth remote sensing systems

Astronomical observes

Fig. 1. CCD - array

4

Topology of the real output device

 

 

 

 

 

 

4.5 µm

 

 

 

 

6 µm

 

 

 

18 µm

 

 

 

 

 

 

 

stop-channel

 

 

 

 

 

 

 

Fig. 2.

 

Topology of 2-

charge

cascades

packs

output device

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Σ

 

 

 

 

 

=

+

 

 

 

+

+

 

 

Σ

 

 

 

 

 

 

 

 

 

 

 

 

=

ε

ε

 

 

 

 

 

 

 

 

 

0

 

Si

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. solved values of capacitances and conversion slopes of FFD areas

 

 

 

 

 

 

 

 

 

Area

 

 

G+c

Σ

 

 

 

 

 

 

 

Capacitance of area , fF

5-6

7−9

23−26

35−41

 

Conversion slope of area

 

 

 

 

 

32-27

23-18

7-6

6-4

 

k,

µV

5

 

 

 

 

 

 

 

 

 

 

 

Test 3D model

Aluminum contact pad to the stop-channel:0 V

Aluminum contact pad to the n+ area: +15 V

p+

n+

p – substrate

Fig. 3. Dimension area

Fig. 4. Doping distribution

26 × 26 × 10 µm (grid)

in the cut of structure

6

Cross-section

Na, sm-3

1

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

4 n+

p+

 

 

 

 

(b)

p – substrate

Nd−Na , sm-3

(a)

(c)

Fig. 4. Doping distribution in the structure (a); cut 1-2 (b); cut 3-4 (c)

7

 

 

 

 

 

 

 

Simulated results

 

 

 

 

 

 

 

 

5

 

 

 

 

(a)

 

 

 

 

 

 

 

 

 

 

(b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

130

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Capacitance, fF

3

 

 

 

 

 

 

 

 

 

conversion slope, µV/electron

110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

 

0

1

2

3

4

5

6

7

8

9

 

 

 

 

Distance between stop-n+, µm

 

 

 

 

 

 

Distance between stop-n+, µm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Dependence of capacitance (а) and conversion slope (b) of FDR on distance between stop-channel and n+ area at 15 V

8

Emax, V/sm

Simulated results

8E+5

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

7E+5

 

 

 

 

 

 

 

 

 

 

14

 

 

 

 

 

 

 

 

6E+5

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

5E+5

 

 

 

 

 

 

 

 

 

fF

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4E+5

 

 

 

 

 

 

 

 

 

Capacitance,

8

 

 

 

 

 

 

 

0 µм

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 µм

3E+5

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

7.5 µм

2E+5

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

1E+5

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

0E+0

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

9

 

0

2

4

6

8

10

12

14

16

Distance between stop-n+, µm

Voltage, V

 

Fig. 6. Dependence of maximum value of field density

Fig. 7. C-V characteristics for different distances between

in FDR on distance between stop-channel and n+ area

stop-channel and n+ area

at 15 V

9

Visualization of modeling results

0 µ

0 µ

(а)

(a)

 

3 µ

3 µ

(b)

(b)

7.5 µ

7.5 µ

 

(c)

(c)

Fig. 8. Electrical field distribution in FDR

Fig. 9. holes distribution in FDR

distance between stop-channel and n+ area

(a) – 0 µ; (b) – 3 µ; (c) – 7.5 µ

10

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]