Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Yepiskoposyan Azokh Cave and the Transcaucasian Corridor.pdf
Скачиваний:
14
Добавлен:
24.03.2021
Размер:
26.51 Mб
Скачать

16 Appendix: Dating

327

Fig. 16.3 Comparison of ESR dates and racemization results (bottom charts) according to depth (top chart in cms) from Azokh1 site. Samples marked with an asterisk (*) were not considered for the age calculation because of their high deviation from mean values

Radiocarbon Dating of Samples from the Azokh Cave Complex (Peter Ditchfield)

A total of 18 samples from the Azokh Cave Complex have been submitted for radiocarbon dating by AMS at Oxford Radiocarbon Accelerator Unit (ORAU), the details of which are listed in Table 16.1. These consisted of nine charcoal samples and nine bone samples from Azokh 2. Six of the twelve samples (four bones and two charcoal samples) failed during pre treatment and yielded no datable material. Ten of the samples yielded nite ages ranging from 2366 ± 35 to 122 ± 23 14C BP (Before Present AD 1950). Two charcoal samples yielded dates greater than 62,000 14C BP.

Pretreatment and Measurement

Chemical pretreatment, target preparation and AMS measurement of the samples were carried out by standard

methods employed at ORAU. Details of the current pretreatment methods used at ORAU can be found in Brock et al. (2010) and are briey summarized below.

Collagen was extracted from bone samples using a sequential acid-base-acid wash at room temperature consisting of 0.5 M hydrochloric acid (3 washes over approx. 18 h), 0.1 M sodium hydroxide (30 mins) and 0.5 M hydrochloric acid (15 mins), with thorough rinsing with ultrapure (Milli-Q) water after each step. The crude collagen was gelatinized at 75 °C and pH3 for 20 h. The gelatin solution was ltered using a 4590 micron Eezi-lter and then ultraltered using a Vivaspin1530 kD MWCP ultralter.

Charcoal samples underwent a similar acid-base-acid pre-treatment of 1 M hydrochloric acid (*20 mins or until effervescence has nished), 0.2 M sodium hydroxide (20 mins) and 1 M hydrochloric acid (1 h) at 80 °C.

The samples were then freeze-dried before being combusted and the resulting carbon dioxide collected cryogenically and graphitized prior to AMS dating, as described by Brock et al. (2010). For details of the target preparation and AMS measurement see Bronk Ramsey et al. (2004a, b, c).

328

Y. Fernández-Jalvo et al.

Calibration

Of the twelve samples that yielded radiocarbon dates, two were greater thanages, and ve were relatively recent. Thus there are only ve dates where calibration is either possible or appropriate. These are samples AZK14 (OxA 17589), No. 121 (OxA 23364), No. 153 (OxA 23543,

OxA23544) and Sample 1 (OxA 18875). The latest is a bone fragment from Azokh 2, the rest are from Azokh 5 (top of the series, i.e. Unit A). These were calibrated using the OxCal calibration program version 4.1.6 (Bronk Ramsey 2010) and the Intcal 09 calibration data set. The calibration plots of these samples are shown in Figs. 16.4 and 16.5.

a

b

c

d

e

Fig. 16.4 Radiocarbon calibrated plots of different dated samples from Azokh sites where calibration is either possible or appropriate. The number of possible ages provide 95% condence

16 Appendix: Dating

329

Fig. 16.5 Azokh 5 radiocarbon calibrated plots arranged by depth. This plot makes the point that sample OxA 23364 (charcoal) is well out of the dating sequence. The two bones (OxA 23544 and OxA 23543), recovered from similar depth as the OxA 23364 charcoal, provide a more consistent age. The deepest specimen (charcoal OxA 17589) gives the oldest age 540 cal BC for the base of unit A

330

Y. Fernández-Jalvo et al.

Electron Spin Resonance (ESR) Dating

(Rainer Grün, Wendy Lees, Maxime

Aubert)

All samples were collected in situ and submitted by the excavators along with sediment directly attached to the samples. The dating procedures followed those routinely applied in the ANU ESR dating laboratory. From each tooth, an enamel fragment with attached dentine was removed and analysed for uranium and thorium using laser ablation ICP-MS (Eggins et al. 2003, 2005). The sediments were analysed for U, Th, and K by solution ICP-MS (Genalysis, Perth). For ESR dose analysis, the enamel was powdered and successively irradiated in 24 steps to 3188 Gy (samples 2380, 2382, 2383, 2384, in 2007) and 16 steps to 1839 Gy (2668, 2689, 2691 and 2692, in 2009). Radiation doses were monitored with alanine dosimeters and evaluated against a calibrated dosimeter set (A. Wieser, Messtechnik, München). Dose values were obtained tting the natural spectrum back into the irradiated ones (Grün 2002).

For the calculation of the internal dose rate values, the beta attenuation values of Marsh (1999) and an alpha efciency of 0.13 ± 0.02 (Grün and Katzenberger-Apel 1994) were used. No in-situ gamma spectrometric measurements were carried out. Considering that about 50% of the gamma dose rate is generated by the 5 cm surrounding of the sample (Aitken et al. 1985), the gamma dose rate was calculated to 50% from the sediment attached to the sample and to 50% from the average of all sediment samples from that particular bed. A time averaged water content of 15 ± 5 was assumed for the sediments. Age calculations were carried out with the ESR-DATA program (Grün 2009a). The ESR results are presented for early U-uptake (EU) as well as combined U-series/ESR. In most cases it was not possible to use the p-value system for combining the U-series and ESR data sets (Grün et al. 1988). Instead, ages were calculated according to the closed system U-series (CSUS) ESR system (Grün 2000), which is more robust and allows solutions when U-leaching occurs. Because most EU-ESR and closed system U-series ages were quite close, the choice of the U-uptake model was not critical (Grün 2000). At most archaeological sites, faunal samples experience delayed U-uptake (Grün 2009b). Here, the EU-ESR age presents the minimum age estimate, and the CSUS-ESR result the maximum possible. However, when U-leaching may have occurred (see below), the EU-ESR age is a maximum age estimate and the CSUS-ESR result gives an indication of the age overestimate.

Results and Discussion

All analytical data are listed in Table 16.2, sorted according to the depth in the prole. The only non-provenanced sample is 2383. The four digit sample numbers indicate an individual tooth, A and B repeat analyses on the same tooth, but on different enamel pieces.

Surprisingly, the EU ESR results of all provenance samples are in stratigraphical order because at most cave sites reworking of teeth leads to a large scatter in the ESR results. However, there are some problems. Some of the U-series results, particularly from Unit II are older than the EU ESR results. This is only possible, if either some U-leaching has occurred in the samples, or if they were reworked from other layers with a lower environmental dose rate. If leaching has occurred (perhaps inuenced by guano), the CSUS calculation gives an indication of how strongly the age results were affected by this process. If the samples were reworked any assumption of when they were incorporated into Unit II, i.e. when Unit II was formed, is pure conjecture. The base of Unit II seems to have been deposited during MIS 6. If the teeth below Unit II were deposited in-situ, the contact between Units IV and V has an age of around 200 ka, and Unit Vm was deposited between *200 and *300 ka.

Amino Acid Racemization Dating

of Fossil Bears from Azokh 1 (Trinidad Torres, José Eugenio Ortiz, Arantxa Díaz Bautista)

Introduction

The amino acid racemization dating method is based on a chemical reaction (racemization) which allows the establishing of aminozones that reasonably have the same age (isochronous). If independent (radiometric) datings are available, it is possible to calibrate amino acid racemization analysis results and to use the method as a numerical dating system.

In general terms, cave bear localities are the best sites for sampling because they are clean, and the caverns thermal history did not show strong variations, with average temperatures moderately low (Torres et al. 2003). In a recent experiment the winter-summer temperature variation within the cave sediment at 30 cm deep was 0.5 °C. Outstanding amounts of amino acids were found in bear dentine samples with ages ranging from 10,000 to more than 300,000 years (Torres et al. 1999).

Table 16.2

ESR (part 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESR (part 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lab

Unit

Depth (cm)

 

De (Gy)

 

De-error

 

U-Enamel

Error

U-Dentine

Error

R48

Error

R04

Error

 

App U-series

no.

 

 

 

 

 

(Gy)

 

(ppm)

 

 

(ppm)

 

 

 

 

 

 

 

(ka)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2668A

Unit II

247

 

192

 

7

 

0.38

 

0.08

4.2

 

0.3

1.2015

0.0194

0.7664

0.0332

148

 

2668B

 

 

 

207

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2689A

Unit II

323

 

300

 

18

 

0.18

 

0.05

17.1

 

1.3

1.328

0.0081

0.9152

0.0116

215

 

2689B

 

 

 

307

 

13

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2692A

Unit II

345

 

355

 

23

 

0.47

 

0.11

16.2

 

0.9

1.2943

0.0141

0.8209

0.0172

167

 

2692B

 

 

 

350

 

50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2383

Unit II

333365/

 

315

 

11

 

0.07

 

0.003

7.1

 

0.3

1.1657

0.0320

0.8024

0.0452

165

 

 

 

non-coordinated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2691A

Unit IV

545

 

337

 

18

 

0.3

 

0.07

6.9

 

0.4

1.2119

0.0199

0.848

0.0299

184

 

2691B

 

 

 

354

 

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2384

Unit Vm

830

 

482

 

14

 

0.25

 

0.005

12.3

 

1.9

1.2179

0.0197

0.9465

0.0242

252

 

2388

Unit Vm

833

 

No ESR

 

 

 

 

 

 

55.7

 

0.2

1.1513

0.0042

0.7048

0.0058

127

 

 

 

 

 

analysis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2382a

Unit Vm

846

 

566

 

16

 

1.11

 

0.01

6.1

 

3.5

1.1736

0.0393

0.8256

0.0459

175

 

2382b

Unit Vm

 

 

544

 

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2380

Unit Vm

848

 

510

 

24

 

0.19

 

0.18

6

 

0.9

1.1805

0.0227

0.7648

0.0343

148

 

2381

Unit Vm

850

 

No ESR

 

 

 

 

 

 

 

 

 

1.1744

0.0170

0.7656

0.0222

149

 

 

 

 

 

analysis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESR (part 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lab No.

Unit

Depth (cm)

+Error

Error

Thickness

Thickness

S1/S2

Sediment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(µm)

error (µm)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U-Sediment

Th-Sediment

K-Sediment

Gamma

Gamma

Beta

 

Beta

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ppm)

 

(ppm)

(%)

 

dose rate

error

 

dose rate

error

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(µGy/a)

(µGy/a)

(µGy/a)

(µGy/a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2668A

Unit II

247

14

13

730

 

30

 

20

5.01

 

8.69

2.264

1246

81

 

382

 

31

2668B

 

 

 

 

780

 

30

 

20

5.01

 

8.69

2.264

1246

81

 

363

 

30

2689A

Unit II

323

8

8

840

 

30

 

20

5.38

 

7.27

2.484

1258

82

 

365

 

30

2689B

 

 

 

 

900

 

30

 

20

5.38

 

7.27

2.484

1258

82

 

344

 

28

2692A

Unit II

345

8

8

580

 

20

 

20

4.68

 

7.02

2.279

1199

78

 

441

 

35

2692B

 

 

 

 

660

 

40

 

20

4.68

 

7.02

2.279

1199

78

 

401

 

35

2383

Unit II

333365/

23

20

700

 

100

 

50

4.57

 

7.35

2.302

1203

79

 

371

 

52

 

 

non-coordinated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2691A

Unit IV

545

18

16

790

 

50

 

20

3.84

 

6.75

2.297

1095

72

 

333

 

30

2691B

 

 

 

 

770

 

90

 

20

3.84

 

6.75

2.297

1095

72

 

340

 

39

(continued)

Dating Appendix: 16

331

Table 16.2 (continued)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

332

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESR (part 2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lab No.

Unit

Depth (cm)

+Error

Error

Thickness

Thickness

S1/S2

Sediment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(µm)

error (µm)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U-Sediment

Th-Sediment

K-Sediment

Gamma

Gamma

Beta

 

Beta

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ppm)

(ppm)

(%)

 

dose rate

error

dose rate

error

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(µGy/a)

(µGy/a)

(µGy/a)

 

(µGy/a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2384

Unit Vm

830

27

 

23

1000

100

50

15

4.36

 

1.656

 

1693

 

111

 

382

 

47

 

 

2388

Unit Vm

833

13

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2382a

Unit Vm

846

27

 

22

800

100

50

10.4

4.16

 

1.471

 

1452

 

95

 

351

 

62

 

 

2382b

Unit Vm

 

 

 

 

800

100

50

10.4

4.16

 

1.471

 

1452

 

95

 

351

 

62

 

 

2380

Unit Vm

848

15

 

13

800

100

50

7.49

4.19

 

1.692

 

1341

 

87

 

319

 

56

 

 

2381

Unit Vm

850

12

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESR (part 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lab

Unit

Depth (cm)

 

Early U-Uptake

 

 

 

 

 

 

 

 

 

 

 

 

US-ESR

 

 

 

 

no.

 

 

 

enamel+dentine DR

int.+Dentine error

Total dose rate

 

Total error

Age

Age error

Age

Age error

 

 

 

 

 

 

 

 

 

(µGy/a)

 

(µGy/a)

 

(µGy/a)

 

(µGy/a)

 

 

(ka)

(ka)

 

 

(ka)

(ka)

 

 

 

2668A

Unit II

247

173

 

 

16

 

1801

88

 

 

106

6

 

 

100

7

 

 

 

2668B

 

 

178

 

 

16

 

1787

88

 

 

115

6

 

 

110

6

 

 

 

2689A

Unit II

323

370

 

 

36

 

1993

94

 

 

150

11

 

 

130

13

 

 

 

2689B

 

 

359

 

 

35

 

1961

94

 

 

156

9

 

 

138

11

 

 

 

2692A

Unit II

345

529

 

 

52

 

2169

100

 

 

163

12

 

 

162

16

 

 

 

2692B

 

 

504

 

 

52

 

2104

100

 

 

166

24

 

 

165

32

 

 

 

2383

Unit II

333365/

154

 

 

16

 

1728

96

 

 

182

11

 

 

184

13

 

 

 

 

 

non-coordinated

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2691A

Unit IV

545

239

 

 

31

 

1667

84

 

 

202

14

 

 

205

16

 

 

 

2691B

 

 

243

 

 

32

 

1678

88

 

 

210

16

 

 

216

18

 

 

 

2384

Unit Vm

830

288

 

 

38

 

2363

126

 

 

203

12

 

 

195

13

 

 

 

2388

Unit Vm

833

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2382a

Unit Vm

846

498

 

 

75

 

2301

136

 

 

246

16

 

 

271

22

 

 

 

2382b

Unit Vm

 

493

 

 

75

 

2296

136

 

 

236

20

 

 

258

27

 

 

 

2380

Unit Vm

848

185

 

 

72

 

1845

126

 

 

276

22

 

 

293

23

 

 

 

2381

Unit Vm

850

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.al et Jalvo-Fernández .Y