Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Yepiskoposyan Azokh Cave and the Transcaucasian Corridor.pdf
Скачиваний:
14
Добавлен:
24.03.2021
Размер:
26.51 Mб
Скачать

9 Herpetofauna from Azokh 1

207

Khosrovsky reservation, and in Turkmenistan on the mountain Dushack in the central Kopetdag, blunt-nosed vipers are found at the altitude up to 2000 m above sea level. On the Pamir, at the altitude 2500 m above sea level, populations from even higher mountains are known (Ananjeva et al. 2006). The Armenian viper, which can be over 1 m in length, occurs at the altitude 10002700 m above sea level in mountain-xerophytic vegetation, in particular oak forests, in the juniper open woodlands, on the rocky slopes of the mountains with sparse bush vegetation, and in the mountain steppes. The type of biotope distribution on the southern spurs of the mountain ranges of the Lesser Caucasus corresponds to the mosaic availability of suitable biotopes (Ananjeva et al. 2006).

In the Miocene, Oriental viperswere widely distributed in the entire southern half of Europe and survived until the end of the Pliocene in the Mediterranean area and in Eastern Europe until at least the Middle Pleistocene (Szyndlar 1991b). In Asia Minor Vipera lebetina is known in the Middle to Late Pleistocene of Karain E, Turkey (S. Bailon, personal communication) and in the Late Pleistocene from Wezmeh Cave, Iran (Mashkour et al. 2009). An Oriental viper(Vipera sp.) has been mentioned too in the Middle Pleistocene of Emirkaya-2, Turkey (Venczel and Sen 1994).

Paleobiogeographical Data

Some Palearctic regions were particularly important as corridors for invasions. Trans-Caucasia was repeatedly affected by fauna and flora exchanges because it is situated at the interface of the European, Asian and African biomes from where it experienced repeated invasions since the Late Oligocene (Veith et al. 2003). According to Sindaco et al. (2000), this area is currently characterized by a high number of endemic reptile taxa bearing an Armenianpattern of distribution, which usually includes species inhabiting mountains or plateaux and usually adapted to steppe or rocky habitats. Excluding these endemic species, three chorotypes are dominant: the Southwestern-Asiatic, the Eastern-Mediterranean and the Turano-Mediterranean.

According to ecologists and biologists (Ministry of Nature Protection 1999), a series of climatic modications have played an important role in determining the current landscapes, ecosystems and biodiversity of the Caucasus region. During the Late Pliocene and Pleistocene, a series of glaciations occurred which affected the existing ecosystems, resulting in reductions in primary subtropical forests, and growth in secondary habitats typical of the temperate zone. During cold phases, reptiles of European origin, such as the meadow viper (Vipera ursinii), grass snake (Natrix natrix), sand lizard (Lacerta agilis), and meadow lizard

(L. praticola) migrated into the Armenian Plateau. During temperate or warm phases, the flora and fauna became dominated by taxa adapted to xerophilous conditions (probably with an Eastern-Mediterranean origin), as more arid-zone habitats emerged. A number of reptiles may also have reached the Armenian Plateau from the Middle Asian deserts, including the race runner (Eremias arguta), pond turtle (Mauremys caspica), and toadhead agama (Phrynocephalus persicus).

Most of the taxa represented in Azokh 1 have clear Eastern-Mediterranean or Turano-Mediterranean afnities (like P. syriacus, P. apodus, O. elegans, E. sauromates), whereas some others have a wider distribution area but always including in the Turano-Mediterranean area (P. viridis and E. jaculus). As an exception C. austriaca and the representatives of the V. berus complex have a more European or Sibero-European distribution and may constitute a special case for the Caucasian area which served as a refuge during the Pleistocene coldest periods.

European and Turano-Mediterranean species have been present at least since the Middle Pleistocene (Unit III). Only Mediterranean amphibians and reptiles are represented in the Early Pleistocene of Dmanisi, Georgia (Delno in Lordkipanidze et al. 2007) and some Sibero-European taxon (Lacerta cf. agilis and Natrix cf. natrix) have been mentioned during or before the Pliocene in the South of the Russian Platform (Ratnikov 2009). On the contrary no clear Middle Asian desert taxa have been found in Azokh 1, but this may be partly the result of the lack of evidence for the systematic position of the small lacertid and agamid lizards, which does not allow us to see if any of the lizards had middle Asian afnities. Nevertheless, it is noteworthy that they only appear in Unit I (i.e. very recently), which may be due to the fact that more arid-zone habitats only emerged after glaciation.

Paleoclimatological

and Paleoenvironmental Inferences

Before completing a quantitative reconstruction of the environment, the origin of the small vertebrate accumulation (i.e. taphonomy) must be understood. During the systematic descriptions, strong evidence of digestion has been seen, in particular on some trunk vertebrae of erycine snake, suggesting predation by a small carnivore. However some preliminary remarks can be made.

The herpetofauna of Azokh 1 is composed exclusively of extant genera and species, the majority of them belonging to thermophilous and xerophilous forms (e.g., Pelobates syriacus, Agamidae, Pseudopus apodus, Ophisops elegans, Eryx jaculus, Elaphe sauromates, etc.). The anuran Pseudepidalea

208

H.-A. Blain

viridis is a form with a wide ecological tolerance. Many of the taxa of Azokh 1 may frequent open wooded or bushy areas. Moreover high mountainous taxa are well represented, with the presence of a representative of the V. berus complex (probably V. ursinii) and the small colubrine Coronella austriaca. There are two high altitude mountains (around 20002500 m) within 610 km of Azokh, but the site itself is at less than 1000 m and the surrounding mountains barely reach 1500 m (P. Andrews 2010, personal communication). Through the sequence, the faunas from Units I to II appear to represent the driest period with the exclusive presence of agamid lizards and P. syriacus, whereas the unit Vu fauna seems to indicate moisterconditions due to the presence of a larger number of C. austriaca remains. Moreover in the Unit Vu fauna, there are no species present that avoid forest environments, such as P. syriacus and the small vipers. So the environment in Unit Vu seems to be more consistent with a meadow-steppe whereas in Units III, II and particularly Unit I, the environment seems to have been more xeric corresponding to an arid mountain steppe (now occurring at lower elevations than meadow-steppes). Here is a case that demonstrates that need to understand the taphonomy, for if the herpetofauna represents mountain steppe, it must have been transported from considerable distances and it needs to be shown how it reached the cave. The small mammal fauna shows a similar range of ecological adaptations, but it has been shown to have been transported to the cave by predatory birds, which can easily travel these distances (Andrews et al. 2016). The climate seems to have been always relatively warm-temperate.

Conclusions

1.The amphibian and squamate reptile fossil fauna from the 20022009 excavations of Azokh 1 is composed of 14 taxa made up of three anurans (Pelobates cf. syriacus, Pseudepidalea viridis and Ranidae/Hylidae indet.), at least fave lizards (Agamidae indet., Pseudopus apodus, Lacerta sp., Ophisops elegans and Lacertidae indet.) and seven snakes [Eryx jaculus, cf. Coronella austriaca, cf. Elaphe sp. (probably E. sauromates), cf. Colubersp., Colubrinaeindet., Vipera sp. [V. berus complex (probably V. ursinii)], Vipera sp. (Oriental viperscomplex or

Daboia)].

2.The herpetofauna of Azokh 1 cave is composed exclusively of extant genera and species, the majority of them belonging to thermophilous and xericadapted forms.

3.Most of the taxa have clear Eastern-Mediterranean or Turano-Mediterranean afnities, whereas some others have a larger distribution area but always including in the Turano-Mediterranean region.

4.A notable exception is the presence of C. austriaca and the representatives of the V. berus complex that have European or Sibero-European afnities. Azokh 1 represents the rst fossil evidence for their presence in the Caucasian area at around 200 ka (Units III and V-upper).

5.From a chronological point of view, European and Turano-Mediterranean species are present at least since the Middle Pleistocene (Unit Vu) whereas no clear Middle Asian desert taxon has been found in Pleistocene levels at Azokh 1 (since the small lacertids and agamid lizard systematic afnities have yet to be elucidated). They only appear in Holocene deposits of Unit I (i.e. very recently), and this may be due to the fact that more arid-zone habitats emerged in the Armenian Plateau after the last glaciation.

6.From a paleoenvironmental point of view, the environment at the time of Unit Vu is consistent with a meadow-steppe environment, whereas in Unit III, II and particularly in Unit I, the environment may have been more xeric corresponding to an arid mountain steppe (now occurring at lower elevations that meadow-steppe). The climate seems always to have been relatively warm-temperate.

Acknowledgements We are deeply grateful to Dr. Prof. Vyacheslav Yu. Ratnikov (State University of Voronezh, Russia), Dr. Prof. Zbigniew Szyndlar (Institute of Systematics and Evolution ofAnimals of the Polish Academy of Sciences, Krakow, Poland), Dr. Salvador Bailon (MNHN, Paris, France), Dr. Massimo Delno (University of Turin, Italy), Dr. Jean-Claude Rage (MNHN, Paris, France), Dr. Marton Venczel (Museul Tárii Crisurilor, Oradea, Romania), Dr. Borja Sanchiz (MNCN, Madrid, Spain), Dr. Yolanda Fernández-Jalvo (MNCN, Madrid, Spain) and to Dr. Peter Andrews (The Natural History Museum, London, UK) for providing us bibliography and/or unpublished information. Dr. José Enrique González and Dr. Salvador Bailon permitted us to consult the osteological material for comparison respectively from the Amphibians and Reptiles collections of the

Museo Nacional de Ciencias Naturales in Madrid and from the Anatomie Comparée collections of the Muséum national dHistoire naturelle in Paris. We want to thank Dr. Prof. Paloma Sevilla (Universidad Complutense de Madrid, Spain), Lena Asryan and Sandra Bañuls (IPHES, Tarragona, Spain) for continuous encouragement and pleasant discussions on Azokh localities and Armenia. Dr. Marton Venczel, Dr. Prof. Zbigniew Szyndlar and Dr. Salvador Bailon as well as two of the editors Dr. Yolanda Fernández-Jalvo and Dr. Peter Andrews improved this manuscript by their comments.

References

Ananjeva, N. B. (1981). Structural characteristics of skull, dentition and hyoid of lizards of the genus Agama from the fauna of the USSR. In

Academy of Sciences of the USSR, Proceedings of the Zoological Institute, 101, 320. [in Russian].

Ananjeva, N. B., Orlov, N. L., Khalikov, R. G., Darevsky, I. S., Ryabov, S. A., & Barabanov, A. V. (2006). The Reptiles of Northern Eurasia, taxonomic diversity, distribution, conservation status. Zoological Institute, Russian Academy of Sciences. Pensoft Series Faunistica (Vol. 47, p. 245). Soa, Bulgaria: Pensoft Publishers.

9 Herpetofauna from Azokh 1

209

Andrews, P., Hixson-Andrews, S., King, T., Fernandez-Jalvo, Y., & Nieto-Díaz, M. (2016). Paleoecology of Azokh 1. In Y. Fernán- dez-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 305320). Dordrecht: Springer.

Appendix: Fernández-Jalvo, Y., Ditcheld, P., Grün, R., Lees, W., Aubert, M., Torres, T., et al. (2016). Dating methods applied to Azokh cave sites. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 321339). Dordrecht: Springer.

Bailon, S. (1991). Amphibiens et reptiles du Pliocène et du Quaternaire de France et dEspagne: mise en place et évolution des faunes. PhD dissertation, Université de Paris VII, pp. 499, 89 pls.

Bailon, S. (1999). Différenciation ostéologique des Anoures (Amphibia, Anura) de France. In J. Desse & N. Desse-Berset (Eds.), Fiches dostéologie animale pour larchéologie, Série C: varia (p. 38). Centre de Recherches Archéologiques-CNRS: Valbonne.

Bailon, S., Bover, P., Quintana, J., & Alcover, J. A. (2010). First fossil record of Vipera Laurenti 1768 Oriental vipers complex(Serpentes: Viperidae) from the Early Pliocene of the western Mediterranean islands. Comptes Rendus Palevol, 9, 147154.

Barahona, F., & Barbadillo, L. J. (1997). Identication of some Iberian lacertids using skull characters. Revista Española de Herpetología, 11, 4762.

Blain, H.-A. (2005). Contribution de la paléoherpétofaune (Amphibia & Squamata) à la connaissance de l’évolution du climat et du paysage du Pliocène supérieur au Pléistocène moyen dEspagne. PhD dissertation, Muséum national dHistoire naturelle, Département de Préhistoire, pp. 402, 67 pls.

Blain, H.-A., & Villa, P. (2006). Amphibians and squamate reptiles from the early Upper Pleistocene of Bois Roche Cave (Charente, southwestern France). Acta Zoologica Cracoviensia, 49A, 132.

Böhme, G. (1977). Zur Bestimmung quartärer Anuren Europas an Hand von Skelettelementen. Wissenschaftliche Zeitschrift Humbold-Universität Berlin (Math.-Nat. Reihe), 36, 283300.

Böhme, M., & Ilg, A. (2003). fosFARBase: http://www.wahre-staerke. com/ (site consulted in January 2011).

Bruno, S., & Maugeri, S. (1992). Guía de las Serpientes de Europa (p. 223). Barcelona: Ediciones Omega.

Delno, M. (2002). Erpetofaune italiane del Neogene e del Quaternario. PhD dissertation, Università degli Studi di Modena e Reggio Emilia. pp. 382, 15 g., 13 tab., 43 pls.

Delno, M., Doglio, S., Roček, Z., Seglie, D., & Kabiri, L. (2009). Osteological Peculiarities of Bufo brongersmai (Anura: Bufonidae) and Their Possible Relation to Life in an Arid Environment.

Zoological Studies, 48, 108119.

Delno, M., Kotsakis, T., Arca, M., Tuveri, C., Pitruzzella, G., & Rook, L. (2008). Agamid lizards from the Plio-Pleistocene of Sardinia (Italy) and an overview of the European fossil record of the family. Geodiversitas, 30, 641656.

Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., et al. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 1370.

Haas, G. (1966). On the Vertebrate Fauna of the Lower Pleistocene Site

Ubeidiya. Publications of the Israel Academy of Sciences and Humanities, Jerusalem, Israel, pp. 70, 14.

Haas, G. (1968). On the Fauna of Ubeidiya. The Israel Academy of Sciences and Humanities. Proceedings (Section of Sciences, n 7, p. 14), Jerusalem, Israel: Israel Academy of Sciences and Humanities Publisher.

Hodrova, M. (1986). Find of Bufo raddei in the Upper Pliocene Bural-Obo locality (Mongolia). Acta Universitatis Carolinae (Geologica) Spinar 2, 17l186.

Hoffstetter, R. (1962). Observations sur les ostéodermes et la classi- cation des Anguidés actuels et fossiles (Reptiles, Sauriens).

Bulletin du Muséum National dHistoire Naturelle, 34, 149157. Hoffstetter, R., & Rage, J.-C. (1972). Les Erycinae fossils de la France

(Serpents, Boidae). Compréhension et histoire de la sous-famille.

Annales de Paléontologie (Vertébrés), 63, 161190.

Holman, J. A. (1998). Pleistocene amphibians and reptiles in Britain and Europe. Oxford Monographs on Geology and Geophysics (Vol. 38, p. 254). New York and Oxford: Oxford University Press

Holman, J. A. (2000). Fossil snakes of North America: Origin, evolution, distribution, paleoecology (p. 371). Bloomington, Indiana: Indiana University Press.

Hossini, S. (2001). Les Anoures (Amphibiens) du Pléistocène inférieur (Villafranchien) du Jebel Irhoud (carrière Ocre), Maroc.

Annales de Paléontologie, 87, 7997.

Hossini, S. (2002). La faune dAnoures marocains du Miocène au Pléistocène et ses rapports avec celle de la meme époque au Sud-Ouest Européen: hypotheses sur lorigine des Anoures au Maroc. PhD dissertation, Université Moulay Ismail, Faculté des Sciences de Meknes, pp. 243, 56 gs.

Jackson, K. (2002). How tubular venom-conducting fangs are formed.

Journal of Morphology, 252, 291297.

Jackson, K. (2003). The evolution of venom-delivery systems in snakes. Zoological Journal of the Linnean Society, 137, 337354.

Klembara, J. (1979). Neue Funde der Gattungen Ophisaurus und Anguis (Squamata, Reptilia) aus dem Untermiozän Westböhmens (CSSR). Vĕstnik Ústřednho ústavu geologickhélo, 54, 163169.

Klembara, J. (1981). Beitrag zur Kenntnis der Subfamilie Anguinae (Reptilia, Anguidae). Acta Universitatis Carolinae (Geologica) Spinar 2, 121168.

Klembara, J. (1986). New Finds of the Genus Ophisaurus (Reptilia, Anguidae) from the Miocene of Western Slovakia (Czechoslovakia).

Acta Universitatis Carolinae, Geologica, Spinar, 2, 187203. Klembara, J., Böhme, M., & Rummel, M. (2010). Revision of the

Anguine lizard Pseudopus laurillardi (Squamata, Anguidae) from the Miocene of Europe, with comments on paleoecology. Journal of Paleontology, 84, 159196.

Kuch, U., Müller, J., Mödden, C., & Mebs, D. (2006). Snake fangs from the Lower Miocene of Germany: evolutionary stability of perfect weapons. Naturwissenschaften, 93, 8487.

Lordkipanidze, D., Jashashvili, T., Vekua, A., Ponce de León, M. S., Zollikofer, C. P. E., Rightmire, G. P., et al. (2007). Postcranial evidence from early Homo from Dmanisi, Georgia. Nature, 449, 305310.

Macey, J. R., Schulte, J. A., Larson, A., Ananjeva, N. B., Wang, Y., Pethiyagoda, R., et al. (2000). Evaluating trans-Tetys migration: An example using acrodont lizard phylogenetics. Systematic Biology, 49, 233256.

Martín, C., & Sanchiz, B. (2010). Lisanfos KMS. Version 1.2. Online reference accessible at http://www.lisanfos.mncn.csic.es/. Museo Nacional de Ciencias Naturales, CSIC. Madrid, Spain. (site consulted in January 2011).

Mashkour, M., Monchot, H., Trinkaus, E., Reyss, J.-L., Biglari, F., Bailon, S., et al. (2009). Carnivores and their Prey in the Wezmeh Cave (Kermanshah, Iran): A Late Pleistocene Refuge in the Zagros.

International Journal of Osteoarchaeology, 19, 678694.

Matz, G., & Weber, D. (1983). Guide des Amphibiens et Reptiles dEurope, Les 173 espèces européennes (p. 292). Delachaux & Niestlé éditeurs: Lausanne.

Maul, L. C., Smith, K. T., Barkai, R., Barash, A., Karkanas, P., Shahack-Gross, R., & Gopher, A. (2011). Of Men and Mice at Middle Pleistocene Qesem Cave, Israel: small vertebrates, environment and biostratigraphy. Journal of Human Evolution, 60, 464480.

210

H.-A. Blain

Ministry of Nature Protection (1999). Republic of Armenia First National Report to The Convention on Biological Diversity incorporating A Country Study on the Biodiversity of Armenia, Republic of Armenia National Report, Yerevan, March 1999, 104 pp. http://www.cbd.int/doc/world/am/am-nr-01-en.pdf.

Moody, S. M. (1980). Phylogenetic and historical biogeographical relationships of the genera in the family Agamidae (Reptilia: Lacertilia). PhD dissertation, University of Michigan. pp. 373.

Moody, S., & Roček, Z. (1980). Chamaeleo caroliquarti (Chamaeleonidae, Sauria): A new species from the Lower Miocene of central Europe. Věstník Ústředníko ústavu geologického, 55, 8592.

Nilson, G., & Andrén, C. (1997). Evolution, systematics and biogeography of Palaeartic vipers. In R. S. Thorpe, W. N. Wüster, A. Malhotra (Eds.), Venomous snakes: Ecology, evolution and snakebite, Symposium of the Zoological Society of London (Vol. 70, pp. 3142).

Nöllert, A., & Nöllert, C. (2003). Guide des amphibiens dEurope, Biologie, Identication, Répartition (p. 383). Delachaux et Niestlé Ed., Paris.

Rage, J.-C. (1984). Serpentes. Handbuch der Paläoherpetologie, part. 11, Gustav Fischer, Stuttgart, xii + 80 p.

Rage, J.-C., & Sen, S. (1976). Les amphibiens et les reptiles du Pliocène supérieur de Çalta (Turquie). Géologie méditerranéenne, 3, 127134.

Ratnikov, V. Yu. (1996). On the Finds of Green Toads (Bufo viridis Complex) in the Late Cenozoic of the East-European Platform.

Palaeontological Journal, 30, 225231.

Ratnikov, V. Yu. (2001a). Osteology of Russian toads and frogs for paleontological researches. Acta Zoologica Cracoviensia, 44, 123.

Ratnikov, V. Yu. (2001b). Herpetofauna from Cherny Yar Sands of the Cherny Yar-Nizhnee Zaimishche Section, Lower Povolzhye (Volga Region). Paleontological Journal, 35, 635640.

Ratnikov, V. Yu. (2001c). Pliocene anurans of East-European Platform.

Russian Journal of Herpetology, 8, 171178.

Ratnikov, V. Yu. (2002). Muchkapian (Early Neopleistocene) amphibians and reptiles of the East-European Plain. Russian Journal of Herpetology, 9, 229236.

Ratnikov, V. Yu. (2004). Identication of some Eurasian species of Elaphe (Colubridae, Serpentes) on the basis of vertebrae. Russian Journal of Herpetology, 11, 9198.

Ratnikov, V. Yu. (2009). Fossil remains of modern amphibian and reptile species as the material for studing of their areas history.

Science Research Works of the Geological Institute of Voronezh, 59, 91 p. [in Russian].

Rauscher, K. L. (1992). Die Echsen [Lacertilia, Reptilia] aus dem Plio-Pleistozän von Bad Deutsch-Altenburg, Niederösterreich.

Beiträge zur Paläontologie Österreich-Ungarns und des Orients, 17, 81177.

Sanchiz, F. B. (1977). La familia Bufonidae (Amphibia, Anura) en el Terciario Europeo. Trabajos Neogeno-Cuaternario 75111.

Sanchiz, B. (1998). Salientia. In Handbuch der Paläoherpetologie, tome 4, München, pp. 275, 153 gs., 12 pls.

Sindaco, R., Venchi, A., Carpaneto, G. M., & Bologna, M. A. (2000). The reptiles of Anatolia: a checklist and zoogeographical analysis.

Biogeographia, 21, 441554.

Speybroeck, J., Beukema, W., & Crochet, P.-A. (2010). A tentative species list of the European herpetofauna (Amphibia and Reptilia) an update. Zootaxa, 2492, 127.

Stöck, M., Moritz, C., Hickerson, M., Frynta, D., Dujsebayeva, T., Eremchenko, V., et al. (2006). Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity. Molecular Phylogenetics and Evolution, 41, 663689.

Stöck, M., Sicilia, A., Belore, N. M., Buckley, D., Lo Brutto, S., Lo Valvo, M., & Arculeo, M. (2008). Post-Messinian evolutionary relationships across the Sicilian channel: mitochondrial and nuclear markers link a new green toad from Sicily to African relatives. BMC Evolutionary Biology, 8, 56.

Szyndlar, Z. (1984). Fossil snakes from Poland. Acta zoologica cracoviensia, 28, 1156.

Szyndlar, Z. (1988). Two new extinct species of the genera Malpolon and Vipera (Reptilia, Serpentes) from the Pliocene of Layna (Spain). Acta zoologica cracoviensia, 31, 687706.

Szyndlar, Z. (1991a). A review of Neogene and Quaternary snakes of Central and Eastern Europe. Part I: Scolecophidia, Boidae, Colubrinae. Estudios Geologicos, 47, 103126.

Szyndlar, Z. (1991b). A review of Neogene and Quaternary snakes of Central and Eastern Europe. Part II: Natricinae, Elapidae, Viperidae.

Estudios Geologicos, 47, 237266.

Szyndlar, Z., & Rage, J.-C. (1999). Oldest Fossil Vipers (Serpentes: Viperidae) from the Old World. Kaupia: Darmstädter Beiträge zur Naturgeschichte, 8, 920.

Szyndlar, Z., & Schleich, H. H. (1994). Two species of the genus Eryx (Serpentes; Boidae; Erycinae) from the Spanish Neogene with comments on the past distribution of the genus in Europe.

Amphibia-Reptilia, 15, 233248.

Tadevosyan, T. L. (20042009). Tadevosyans Herpetological Resources. http://www.herp-am.narod.ru/index.htm. Accessed March 2010.

Veith, M., Schmidtler, J. F., Kosuch, J., Baran, I., & Seitz, A. (2003). Palaeoclimatic changes explain Anatolian mountain frog evolution: A test for alternating vicariance and dispersal events. Molecular Ecology, 12, 185199.

Venczel, M., & Várdai, G. (2000). The genus Elaphe in the Carpathian Basin: fossil record. Nymphaea, Folia Naturae Bihariae, 28, 6582.

Venczel, M., & Sen, S. (1994). Pleistocene amphibians and reptiles from Emirkaya-2, Turkey. Herpetological Journal, 4, 159165.

Williams, L., Zazanashvili, N., & Sanadiradze, G. (Eds.). (2006).

Ecoregional Conservation Plan for the Caucasus (2nd edn.), May 2006, Tbilisi, Countur Ltd. pp. 222. http://www.wwf.de/leadmin/ fm-wwf/pdf_neu/Kaukasus_OEkoregionaler_Naturschutzplan_ May06.pdf.