Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Yepiskoposyan Azokh Cave and the Transcaucasian Corridor.pdf
Скачиваний:
14
Добавлен:
24.03.2021
Размер:
26.51 Mб
Скачать

12 Coprolites, Paleogenomics and Bone Content Analysis

283

prior to this study and all genetic data from the coprolite were obtained prior to the analyses of modern hyena samples, which were performed later in the modern DNA laboratory.

The contamination of the coprolite may have occurred in South Africa, for the Azokh coprolite was sawed for pollen analysis in the same laboratory room in Bloemfontein in which 10 days before fresh brown hyena scats had been cleaned. Thus, in spite of careful preparation to avoid pollen contamination, residues might have contaminated the coprolite before it was returned to the sample bag immediately after sawing. We believe therefore that the most likely explanation for the presence of brown hyena DNA sequences in the Azokh coprolite is that it had been contaminated with modern brown hyena DNA through secondary contact (bench surface, saw etc.) or residues produced in the Bloemfontein laboratory. This explanation is more parsimonious than would be the reappraisal of past brown hyena distribution with a range extending up to NagornoKarabakh. The fact that, apart from brown hyena, no other carnivore sequences were obtained via the targeted PCR approach, and that no indication of the producers species was found in the genomic data set, taken together with our previous investigations of numerous cave bear bones from the Azokh cave from which no PCR product was obtained, argue in favor of poor endogenous DNA preservation in the fossil remains of the Azokh cave. Samples with poor DNA preservation, however, are particularly prone to produce artifactual results in paleogenetic studies. The present study highlights the importance of addressing the problems of contamination starting at the very early stages of sample collection during eld work when a paleogenetic analysis of the samples is considered. Taken together with our previous demonstration of the importance of early sample treatment to favor optimal DNA preservation (Pruvost et al. 2007) our work reveals the importance of a close collaboration between molecular geneticists and archaeologists or paleontologists.

Conclusions

1.Two coprolites recovered from Azokh 1, Unit II have been studied.

2.Their size and form are comparable to hyena scats, but there is no indication in the form of bone crushing or tooth marks that hyenas were present. No hyena fossils have been recovered from Unit II so far, but they are known in underlying deposits in Unit V.

3.The most abundant species in this site is the cave bear (Ursus spelaeus), an extinct species whose dietary and living behaviors have been considered to be different (though still controversial) to modern bears.

4.The much larger body size of U. spelaeus compared to the largest sized hyena recorded in the site, should have produced larger sized coprolites. Indeed, comparisons with hyena coprolites from other fossil sites show that bear coprolites are larger than the Azokh coprolites. Coprolite morphomotry has not been conclusive. However, the involvement of hyenas with no further taxonomic remains or taphonomic evidence of their presence, except for their coprolites, appears dubious.

5.Chemical analyses of the coprolites by diffraction and uorescence suggest the possibility of hyenas as the

coprolite producer by the presence of the bone mineral (hydroxylapatite). However, hydroxyapatite is the most common and stable neo-formed mineral derived from bat guano diagenesis, which is very intense in Unit II, and has actually been identied in geological materials of Unit II, such as stones and sediments.

6.Relatively high content of amorphous phases and low crystallinity in both geological (stones and sediments)

and biological (coprolites) samples may agree with neo-formed minerals, excluding the inuence of any

organic content in Azokh materials. However, further investigations using other techniques and a higher number of samples are needed.

7.The paleogenetic analysis of the coprolite yielded mitochondrial sequences identical to those of modern brown hyena (Hyaena brunnea) while the paleogenomic analysis did not reveal any indication for DNA sequences of a potential predator.

8.Brown hyenas are today and for their known history restricted to southern Africa, and it is unlikely that their range ever extended into Eurasia. The most parsimonious explanation for this result is contamination of the coprolite from fresh brown hyena scats that were treated in the University of the Free State laboratory in Bloemfontein prior to the opening of the coprolite.

9.In summary, none of the methods applied here has provided conclusive indication of the species that produced these coprolites. None of the results obtained could support or discard bears vs. hyenas as the taphonomic agent. Thus, the producers species cannot be dened at this time.

Acknowledgements We are grateful to the authorities of Nagorno-Karabakh for permissions to work on these specimens. We thank the Electron Microscopy Unit of the Museo Nacional de Ciencias Naturales for their careful and professional work, Teresa Sanz for pictures taken of the coprolites before processing and Pablo Silva for pictures of modern bears. The authors are also grateful to M.D. Pesquero for providing coprolite measurements from La Roma site. We thank Corinne Esser from the Zoo Fauverie du Mont Faron, France, for providing hair and scats of brown hyenas. The authors are grateful to comments from Mark Lewis, Nigel Larkin, the three anonymous reviewers and the editor in charge (Peter Andrews) who greatly improved this chapter.

284

E.A. Bennett et al.

References

Albaugh, G. P., Iyengar, V., & Lohani, A. (1992). Isolation of exfoliated colonic epithelial cells, a novel non-invasive approach to the study of cellular markers. International Journal of Cancer, 52, 347350.

Andrews, P. (1990). Owls, caves and fossils. London: Natural History Museum.

Andrews, P., & Fernández-Jalvo, Y. (1998). 101 uses for fossilized faeces. Nature, 393, 629630.

Appendix: Fernández-Jalvo, Y., Ditcheld, P., Grün, R., Lees, W., Aubert, M., Torres, T., Ortiz, J.E., Díaz Bautista, A. & Pickering, R. (2016). Dating methods applied to Azokh cave sites (Appendix). In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 321339). Dordrecht: Springer.

Bennett, E. A., Massilani, D., Lizzo, G., Daligault, J., Geigl, E.-M., & Grange, T. (2014). Library construction for ancient genomics: Single strand or double strand? Biotechniques, 56, 289300.

Binford, L. S. (1980). Bones: Ancient men and modern myths. Dordrecht: Academic Press.

Bocherens, H., Fizet, M., & Mariotti, A. (1994). Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: Implications for Pleistocene bears.

Palaeogeography, Palaeoclimatology, Palaeoecology, 107, 213225. Bon, C., Berthonaud, V., Maksud, F., Labadie, K., Poulain, J., Artiguenave, F., et al. (2012). Coprolites as a source of information on the genome and diet of the cave hyena. Proceedings of

Biological Science, 279(1739), 28252830.

Cáceres, I., Esteban-Nadal, M., Bennàsar, M., & Fernández-Jalvo, Y. (2011). Was it the deer or the fox? Journal of Archaeological Science, 38, 27672774.

Champlot, S., Berthelot, C., Pruvost, M., Bennett, E. A., Grange, T., & Geigl, E.-M. (2010). An efcient multistrategy dna decontamination procedure of PCR reagents for hypersensitive PCR applications. PLoS ONE, 5(9), e13042.

Charruau, P., Fernandes, C., Orozco-Ter Wengel, P., Peters, J., Hunter, L., Ziaie, H., et al. (2010). Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: Evidence for long-term geographic isolation. Molecular Ecology, 20, 706724.

Dalen, L., Götherström, A., & Angerbjörn, A. (2004). Identifying species from pieces of faeces. Conservation Genetics, 5, 109111.

Delaney-Rivera, C., Plummer, T. W., Hodgson, J. A., Forrest, F., Hertel, F., & Oliver, J. S. (2009). Pits and pitfalls: Taxonomic variability and patterning in tooth mark dimensions. Journal of Archaelogical Science, 36, 25972608.

Denys, C., Fernández-Jalvo, Y.. & Dauphin, Y. (1995). Experimental Taphonomy: Preliminary results of the digestion of micromammal bones in laboratory. Comptes Rendues de l’Academie des Sciences,

321 (série II): 803809.

Diedrich, C. J. (2012). Cave bear killers and scavengers from the last ice age of central Europe: Feeding specializations in response to the absence of mammoth steppe fauna from mountainous regions.

Quaternary International, 255, 5978.

Domínguez-Rodrigo, M., & Piqueras, A. (2003). The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours.

Journal of Archaelogical Science, 30, 13851391.

Fernández, D. (1998). Biogeoquímica isotópica (13C, 15N) del Ursus Spelaeus del yacimiento de Cova Eiró s, Lugo. Cadernos do Laboratorio Xeolóxico de Laxe, 23, 237249.

Fernández, D., Vila, M., & Grandal, A. (2001). Stable isotopes data (delta 13C, delta15N) from the cave bear (Ursus spelaeus): A new approach to its palaeoenvironment and dormancy. Proceedings of the Royal Society B: Biological Sciences, 268, 11591164.

Fernández-Jalvo, Y., Scott, L., Carrión, J. S., Gil-Romera, G., Brink, J., Neumann, F., & Rossouw, L. (2010a). Pollen taphonomy of hyaena coprolites: an experimental approach. In E. Baquedano & J. Rosell (Eds.), Zona Arqueológica. Actas de la 1ª Reunión de científicos sobre cubiles de hiena (y otros grandes carnívoros) en los yacimientos arqueológicos de la Península Ibérica (pp. 148156). Alcalá de Henares: Museo Arqueológico Regional.

Fernández-Jalvo, Y., Andrews, P., Pesquero, D., Smith, C., Marin-Monfort, D., Sánchez, B., et al. (2010b). Early bone diagenesis in temperate environments Part I: Surface features and histology. Palaeogeography, Palaeoclimatology, Palaeoecology, 288, 6281.

Fernández-Jalvo, Y., King, T., Andrews, P., Yepiskoposyan, L. (2016). Introduction: Azokh Cave and the Transcaucasian Corridor. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.),

Azokh Cave and the Transcaucasian Corridor (pp. 126). Dordrecht: Springer.

Figueirido, B., Palmqvist, P., & Pérez-Claros, J. A. (2009). Ecomorphological correlates of craniodental variation in bears and paleobiological implications for extinct taxa: An approach based on geometric morphometrics. Journal of Zoology, 277, 7080.

Gilbert, M. T. P., Jenkins, D. L., Götherstrom, A., Naveran, N., Sanchez, J. J., Hofreiter, M., et al. (2008). DNA from Pre-Clovis Human Coprolites in Oregon, North America Science, 320 (5877), 786789.

Grandal dAnglade, A., & López-González, F. (2005). Sexual dimorphism and autogenetic variation in the skull of the cave bear (Ursus spelaeus Rosenmüller) of the European Upper Pleistocene. Geobios, 38, 325338.

Grandal dAnglade, A., & Fernández-Mosquera, D. (2008). Hibernation can also cause high δ15 N values in cave bears: A response to Richards et al., Proceedings of The National Academy of Sciences of the USA, 105, 11.

Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood.

Systematic Biology, 52(5), 696704.

Harrison, T. (2011). Coprolites: Taphonomic and paleoecological implications. In T. Harrison (Ed.), Paleontology and Geology of Laetoli: Human Evolution in Context (Vol. 1, pp. 279292). Geology, Geochronology, Paleoecology and Paleoenvironment Dordrecht: Springer.

Haynes, G. (1980). Prey bones and predators: potential ecologic information from analyses of bone sites. OSSA, 7, 7597.

Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25, 101110.

Krause, J., Unger, T., Nocon, A., Malaspinas, A. S., Kolokotronis, S. O., Stiller, M., et al. (2008). Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary. BMC Evolutionary Biology, 8, 220.

Keiler, J.A., 2001. Die koprolithen aus dem Unterpleistozän von Untermaßfeld. In R.-D. Kahlke (Ed.), Das Pleistozän von Untermaßfeld bei Meiningen (Thüringen), (pp. 691698) Teil 2. Dr. Rudolf Habelt GMBH, Bonn

King, T., Compton, T., Rosas, A., Andrews, P. Yepiskoyan, L., & Asryan, L. (2016). Azokh Cave Hominin Remains. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews

12 Coprolites, Paleogenomics and Bone Content Analysis

285

(Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 103106). Dordrecht: Springer.

Kolska Horwitz, L. (1990). The origin of partially digested bones recovered from archaeological contexts in Israel. Paléorient, 16, 97106.

Kolska Horwitz, L., & Goldbergb, P. (1989). A study of Pleistocene and Holocen hyaena coprolites. Journal of Archaeological Science, 16, 7194.

Kurtén, B. (1976). The cave bear story. Dordrecht: Columbia University Press.

Larkin, N. R., Alexander, J., & Lewis, M. (2000). Using experimental studies of recent faecal material to examine hyaena coprolites from the West Runton Freshwater Bed, Norfolk, U.K. Journal of Archaeological Science, 27, 1931.

LeGeros, R. Z. (1994). Biological and Synthetic Apatites. In P. W. Brown & B. Constantz (Eds.), Hydroxyapatite and Related Materials (pp. 328) Boca Raton: CRC Press.

Lewis, M. (2011). Pleistocene hyaena coprolite palynology in Britain: implications for the environments of early humans. In N. M. Ashton, S. G. Lewis & C. B. Stringer (Eds.), The Ancient Human Occupation of Britain (pp. 263278). Amsterdam: Elsevier

Lewis, M., Pacher, M., & Turner, A. (2010). The larger carnivora of teh West Runton Freshwater Bed. Quaternary International, 228, 116135.

Macdonald, D. W., & Barrett, P. (1993). Field Guide of Mammals. Britain and Europe London: HarperCollins.

Maguire, J. M., Pemberton, D., & Collett, M. H. (1980). The Makapansgat limeworks grey breccia: Hominids, hyaenas, hystricds or hillwash? Paleontologia Africana, 23, 7598.

Marin-Monfort, M. D., Cáceres, I., Andrews, P., Pinto, A. C., & Fernández-Jalvo, Y. (2016). Taphonomy and Site Formation of Azokh1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor

(pp. 211249). Dordrecht: Springer.

Matthews, T. (2000). Predators, prey and the palaeoenvironment. South African Journal of Science, 96, 2324.

Matthews, T. (2006). Taphonomic characteristics of micromammals predated by small mammalian carnivores in South Africa: Application to fossil accumulations. Journal of Taphonomy, 4, 143160.

Mattson, D. J. (1998). Diet and morphology of extant and recently extinct northern bears. Ursus, 10, 479496.

Mazza, P., Rustioni, M., & Boscagli, G. (1995). Evolution of ursid dentition; with inferences on the functional morphology of the masticatory apparatus in the genus Ursus. In J. Moggi-Cecchi (Ed.),

Aspects of dental biology: palaeontology, anthropology and evolution

(pp. 147157). Florence: International Institute for the Study of Man. Miotto, R. A., Ciocheti, G. Rodrigues, F. P., & Galetti, Jr. P. M. (2007).

Identication of pumas (Puma concolor (Linnaeus, 1771) through faeces: A comparison between morphological and molecular methods. Brazilian Journal of Biology, 67 (4, Suppl.), 963965.

Mondini, M. (2002). Carnivore Taphonomy and the Early Human Occupations in the Andes. Journal of Archaeological Science, 29, 791801.

Montalvo, C. I., Pessino, M. E. M., & González, V. H. (2007). Taphonomic analysis of remains of mammals eaten by pumas (Puma concolor Carnivora, Felidae) in central Argentina. Journal of Archaeological Science, 34, 21512160.

Mulla, S. M., Phale, P. S., Saraf, M. R. (2012). Use of X-Ray diffraction technique for polymer characterization and studying the effect of optical accesories. AdMet 2012 Paper No. OM006, 16.

Murray, D., Bunce, M., Cannell, B. L., Oliver, R., Houston, J., White, N. E., et al. (2011). DNA-based faecal dietary analysis: A comparison of qPCR and high throughput sequencing approaches.

PLoS ONE, 6, 25776.

Murray, J., Lynch, E. P., Domínguez-Alonso, P., & Barham, M. (2016). Stratigraphy and Sedimentology of Azokh Caves, South Caucasus. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor

(pp. 2754). Dordrecht: Springer.

Nelson, R. A., Wahner, H. W., Fones, J. J., Ellefson, R. D., & Zollman, P. E. (1973). Metabolism of bears before, during and after winter sleep. American Journal of Physiology, 224, 491496.

Partt, S., & Larkin, N. R. (2010). Appendix. Exceptionally large hyaena coprolites from West Runton and the possible presence of the giant short-faced hyaena (Pachycrocuta brevirostris). Quaternary International, 228, 131135.

Payne, S., & Munson, P. J. (1985). Ruby and how many squirrels? The destruction of bones by dogs. In N. R. J. Fieller, D. D. Gilbert-Sov & N. G. A. Ralph (Eds.), Paleobiological Investigations (pp. 3146). BAR Int. Ser. 266, Oxford.

Peigné, S., Goillot, C., Germonpré, M., Blondel, C., Bignon, O., & Merceron, G. (2009). Predormancy omnivory in European cave bears evidenced by a dental microwear analysis of Ursus spelaeus from Goyet, Belgium. Proceedings of the National Academy of Sciences USA, 106, 1539015393.

Pesquero, M. D., Salesa, M. J., Espílez, E., Mampel, L., Siliceo, G., & Alcalá, L. (2011). An exceptionally rich hyaena coprolites concentration in the Late Miocene mammal fossil site of La Roma 2 (Teruel, Spain): Taphonomical and palaeoenvironmental inferences.

Palaeogeography, Palaeoclimatology, Palaeoecology, 311, 3037. Pickering, T. R. (2002). Reconsideration of criteria for differentiating daunal assemblages accumuulated by hienas and hominids. Inter-

national Journal of Osteoarchaeology, 12, 127174.

Pobiner, B. (2008). Paleoecological information in predator tooth marks. Journal of Taphonomy, 6, 373397.

Poinar, H. N., Hofreiter, M., Spaulding, W. G., Martin, P. S., Stankiewicz, B. A., Bland, H., et al. (1998). Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis.

Science, 281, 402406.

Pokines, T. T., & Peterhans, J. C. K. (2007). Spotted hyena (Crocuta crocuta) den use and taphonomy in the Masai Mara National Reserve, Kenya. Journal of Archaeological Science, 34, 19141931.

Pruvost, M., & Geigl, E.-M. (2004). Real-time quantitative pcr to assess the authenticity of ancient DNA. Journal of Archaeological Science, 31, 11911197.

Pruvost, M., Grange, T., & Geigl, E.-M. (2005). Minimizing DNA-contamination by using UNG-coupled quantitative real-time PCR (UQPCR) on degraded DNA samples: Application to ancient DNA studies. BioTechniques, 38, 569575.

Pruvost, M., Schwarz, R., Bessa Correia, V., Champlot, S., Braguier, S., Morel, N., et al. (2007). Freshly excavated fossil bones are best for ancient DNA amplication. Proceedings of the National Academy of. Science USA, 104(3), 739744.

Roberts, A. (1954). The mammals of South Africa. 2nd ed. Trustees of, The mammals of South Africa Book Fund, Johannesburg.

Rohland, N., Pollack, J. L., Nagel, D., Beauval, C., Airvaux, J., Pääbo, S., & Hofreiter, M. (2005). The population history of extant and extinct hyenas. Molecular Biology and Evolution, 22, 24352443.

Richards, M. P., Pacher, M., Stiller, M., Quilès, J., Hofreiter, M., Constantin, S., et al. (2008). Isotopic evidence for omnivory among European cave bears: Late Pleistocene Ursus spelaeus from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences of the USA, 105, 600604.

286

E.A. Bennett et al.

Scott, L., Rossow, L., Cordova, C., & Risberg, J. (2016). Palaeoenvironmental Context of Coprolites and Plant Microfossils from Unit II. Azokh 1. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 287295). Dordrecht: Springer.

Selvaggio, M. M., & Wilder, J. (2001). Identifying the involvement of multiple carnivore taxa with archaeological bone assemblages.

Journal of Archaeological Science, 28, 465470.

Shehzad, W., Riaz, T., Nawaz, M. A., Miquel, C., Poillot, C., Shah, S. A., et al. (2012). Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Molecular Ecology, 21, 19511965.

Shokralla, S., Spall, J. L., Gibson, J. F., & Hajibabaei, M. (2012). Next-generation sequencing technologies for environmental DNA research. Molecular Ecology, 21, 17941805.

Skinner, J. D. (1976). Ecology of the brown hyena Hyaena brunnea in the Transvaal with a distribution map for southern Africa. South African Journal of Science, 72, 262269.

Skinner, J. D., Haupt, M. A., Hoffmann, M., & Dott, H. M. (1998). Bone collection by brown hyaenas Hyaena brunnea in the Namib Desert: Rate of accumulation. Journal of Archeological Science, 25, 6971.

Smith, C. I., Faraldos, M., & Fernández-Jalvo, Y. (2016). Bone Diagenesis at Azokh Caves. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.), Azokh Cave and the Transcaucasian Corridor (pp. 251269). Dordrecht: Springer.

Stuart, C., & Stuart, T. (1994). A field guide to the tracks and signs of southern and east african wildlife. Cape Town: Southern Book Publishers.

Van der Made, J., Torres, T., Ortiz, J. E., Moreno-Pérez, L., & Fernández-Jalvo, Y. (2016). The new Material of Large Mammals from Azokh and Comments on the Older Collections. In Y. Fernández-Jalvo, T. King, L. Yepiskoposyan & P. Andrews (Eds.),

Azokh Cave and the Transcaucasian Corridor (pp. 117159). Dordrecht: Springer.

Vila Taboada, M., Fernández Mosquera, D., López González, F., Grandal dAnglade, A., & Vidal Romaní, J. R. (1999). Paleoecological implications inferred from stable isotopic signatures (d13C, d15 N) in bone collagen of Ursus spelaeus ROS.-HEIN. Cadernos do Laboratorio Xeolóxico de Laxe, 24, 7387.

Vila Taboada, M., Fernández Mosquera, D., & Grandal dAnglade, A. (2001). Cave bears diet: A new hypothesis based on stable isotopes.

Cadernos do Laboratorio Xeolóxico de Laxe, 26, 431439. Walker, C. (1993). Signs of the wild. Cape Town: Struik Publishers.