Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Савельев С.В. Происхождение мозга.pdf
Скачиваний:
222
Добавлен:
19.10.2020
Размер:
8.45 Mб
Скачать

поведение попадает под контроль гормональных центров и становится более генерализованным, программируемым и предсказуемым. Соотношение влияний на поведение нейрогормональных и нервных комплексов специально не изучали. Однако приблизительная оценка показывает, что у высших беспозвоночных поведение примерно на 85% контролируется нейрогормонами, а у приматов и человека доля этого влияния не достигает 50%.

77

§ 11. Нервная система беспозвоночных

У беспозвоночных диффузно-ганглиозная нервная система с выраженными головными и туловищными ганглиями. Туловищные ганглии обеспечивают местный контроль над вегетативными функциями и моторной активностью. Головные ганглии содержат скопления нейронов, отвечающих за осязание, зрение, обоняние, вкус, слух, электрорецепцию и эндогенную рецепцию (рис I-15). Эти специализированные области интегрированы между собой и имеют своеобразную надстройку — комплекс вставочных ассоциативных нейронов. Нейроны могут располагаться как в виде дополнительных ядер в нейропиле головных ганглиев, так и в ассоциативных структурах — грибовидных телах. Грибовидные тела не имеют прямых связей с рецепторами конкретных органов чувств. Они являются своеобразной надстройкой над специализированными центрами, что отражено и в их строении. Грибовидным телам свойственна не нейропильная или ядерная, а стратифицированная структура. Клетки расположены слоями, как бы в несколько этажей. Этот тип организации нейронов позволяет оптимально обрабатывать поступающую информацию и является структурным признаком сложных анализаторных или ассоциативных функций. Если в ганглиях или грибовидных телах принято решение и запущена поведенческая программа, то она реализуется через систему эффекторных центров — двигательных или нейрогормональных клеток. В самой сложной нервной системе насекомых эффекторные центры и нейрогормональные клетки тоже выделены в отдельные структуры головных ганглиев (Pierce, Mangel, 1987). По принципам специализации мозга позвоночные и беспозвоночные очень похожи (см. рис. I-15). Разница сводится к размерам мозга и способам решения поведенческих задач.

Оценивая результаты морфологической эволюции нервной системы, необходимо отметить, что наибольшего развития она достигла у беспозвоночных животных. Беспозвоночные подтвердили это преимущество тем, что стали самой разнообразной и многочисленной группой животных на планете. Только насекомых насчитывается более 1 млн видов, что делает их безусловными лидерами нейробиологической эволюции. Их нервная система очень небольшого размера, обладает развитыми сенсорными входами и имеет практически полный набор программ поведения, находящийся под контролем генетических и нейрогормональных процессов. Компактность, экономичность и детерминированность делают нервную систему беспозвоночных совершенным инструментом для решения стандартных задач. Учитывая однотипность и предопределённость реакций нервной системы, легко понять согласованность миграций, половую и суточную активность

78

высших беспозвоночных. Совершенство нервной системы позволило беспозвоночным освоить огромные пространства и быть самой распространённой группой животных на планете. Однако существует и обратная сторона медали. За компактность, экономичность и эффективность нервной системы беспозвоночным пришлось заплатить индивидуализацией поведения. Беспозвоночные практически не обладают внутривидовой изменчивостью в строении нервной системы и как следствие индивидуальными особенностями поведения. Они совершенны в предусмотренных природой случаях и беспомощны в нестандартной ситуации.

Из высших беспозвоночных получились бы идеальные солдаты, но из них не вышел бы ни один генерал. Там, где начинаются индивидуальность и творчество, царят морфологическая изменчивость, структурная избыточность и случайность.

§ 12. Нервная система позвоночных

Нервная система позвоночных построена на принципах вероятностного развития, дублирования, избыточности и индивидуальной изменчивости. Это не означает, что в мозге позвоночных нет места генетической детерминации развития или нейрогормональной регуляции. Все эти слагаемые поведения присутствуют. Однако они играют несоизмеримо меньшую роль, чем у беспозвоночных. При развитии нервной системы позвоночных действуют законы формообразования, которые детерминируют первичную региональную экспрессию генов и морфогенез (Савельев, 2001). Одновременно есть и огромная переизбыточность эмбриональных нейробластов. Строгой детерминации развития каждого отдельного нейрона, как у беспозвоночных, нет. Судьба клетки вероятностна и зависит от тех коммуникативных взаимодействий, в которые она вступает во время индивидуального развития и дифференцировки. Достаточно высокая случайность судьбы каждого нейробласта отражается в огромных масштабах гибели клеток нервной системы. При развитии головного мозга млекопитающих нормальная гибель клеток обычно составляет 0,2-0,4%. К концу метаморфоза бесхвостых амфибий гибнут 85% всех нейробластов спинного мозга. Такие потери клеток были бы невосполнимы для беспозвоночных, а у позвоночных эти события составляют нормальный морфогенез. Вероятностное развитие нервных клеток позвоночных подтверждено в многочисленных экспериментах. Достаточно упомянуть способность нервной системы позвоночных к компенсации искусственно вызванной гибели клеток. ЕСЛИ у эмбриона амфибии на стадии нервной пластинки случайным образом (не в одном месте) разрушить 40% клеток, то зародыш разовьётся в нормальный организм немного меньшего размера.

79

Рис. I-15. Гистологическое строение нервной системы позвоночных и беспозвоночных.

Ганглии нервной системы имеют общий план строения как у позвоночных, так и у беспозвоночных животных.

а — подглоточный ганглий речного рака; б — головные ганглии таракана; в срез через головной мозг хорька; г спинной мозг домовой мыши; д ганглии дорсальных рогов спинного мозга мышонка. Срезы а, г, д окрашены по Маллори, б, в по Нисслю.

80

Следовательно, нервная система позвоночных уже в эмбриональный период закладывается с «переизбытком» клеток, поскольку их судьба не столь строго предопределена, как у беспозвоночных. Известные различия в развитии нервной системы позвоночных и беспозвоночных животных позволяют назвать онтогенетическое развитие позвоночных регуляционным, а беспозвоночных — детерминационным. Это не означает полного отсутствия детерминационных явлений у позвоночных и регуляционных процессов у беспозвоночных. Однако явное преобладание одного процесса над другим совершенно очевидно. Иначе и не может быть по логике поведения животных этих групп. Жёсткая детерминация развития и поведения свойственна беспозвоночным. Для позвоночных характерны вероятностное развитие и поливариантность индивидуального поведения. Различные стратегии развития нервной системы позвоночных и беспозвоночных отражаются в основных принципах её морфологической организации. Если нервная система компактизирована из-за размеров и массы тела беспозвоночных, то у позвоночных нет серьёзных физических препятствий для её увеличения. Отсутствие ограничения на размер нервной системы позволяет головному и спинному мозгу позвоночных достигать крупных размеров и массы 10 кг (Nieuwenhuys, 1998). Однако различия в размерах мозга не исключают сходства гистологической организации у позвоночных и беспозвоночных (см. рис. I-15; рис. I-16).

Нервные клетки в обеих группах животных не имеют принципиальных различий в цитологической организации, хотя некоторые особенности в строении отростков и тел клеток могут быть предметом исследования сравнительной цитологии. В самом простом случае нервные клетки образуют диффузную сеть у животных обеих групп (см. рис. I-16). В ганглиях беспозвоночных и нервной трубке позвоночных клетки и их отростки расположены закономерным образом. К первому типу организации нервных клеток беспозвоночных следует отнести их способность формировать «параллельные ганглии» с однонаправленным вытягиванием тел нейронов и формированием контактов между параллельно расположенными отростками. Такие ганглии мало распространены в нервной системе позвоночных. Второй тип организации нейронов свойствен беспозвоночным и носит название дифференцированного нейропиля, расположенного внутри кольцевого ганглия (см. рис. I-16). Он состоит из тел клеток, расположенных в корковом слое, и нейропиля, состоящего из

переплетённых отростков нейронов. Это наиболее распространённый принцип строения туловищных и головных ганглиев. Третьим типом концентрации нервных элементов в обеих группах является нейропиль с островками тел клеток (см. рис. I-14; I-16). Локальные концентрации тел

81

Рис I-16. Основные тенденции усложнения структурной организации нервной системы.

Синими стрелками обозначен условный этап появления нервных клеток, красными основной путь церебрализации беспозвоночных, а зелёными позвоночных животных. В обоих случаях наиболее сложная нервная система организована по ганглиозно-ядерно-корковому типу. Основными отличиями позвоночных являются больший размер мозга, наличие мозговых желудочков и замкнутое кровообращение.

82

клеток беспозвоночных сходны с ядрами головного и спинного мозга позвоночных. Компактное расположение тел нейронов внутри ганглия позволяет клеткам эффективнее обмениваться информацией.

Упозвоночных чаще встречаются периферические ганглии, окружённые соединительнотканной оболочкой. Тела клеток в таких ганглиях расположены по всему объёму структуры и не имеют поверхностной локализации, как у беспозвоночных. Нейропиль, состоящий из переплетённых отростков клеток, не выражен. В корковых структурах позвоночных и беспозвоночных расположение тел клеток многослойное (см. рис. I-15; I-16). Они обычно разделены пучками волокон, которые позволяют выделять как горизонтальные слои коры, так и вертикальные колонки. Для позвоночных специфично участие разнообразных типов клеток в формировании коры, а у беспозвоночных это довольно редкое явление. Принципиальным морфологическим отличием позвоночных являются мозговые желудочки, которые окружены специализированными эпендимными клетками. Эти клетки сохраняют эмбриональные свойства и могут участвовать в регенерации мозга. У постоянно растущих животных, таких, как неотенические виды хвостатых амфибий, акулы и некоторые рептилии, эпендимные клетки спинного мозга могут пролиферировать и формировать отростки даже у половозрелых особей. У некоторых певчих птиц происходят сезонная пролиферация эпендимных клеток и их миграция в «певческие» центры мозга самцов. Таким образом происходит формирование морфологического субстрата для усложнения песенного репертуара. Сохранение эпендимными клетками способности к пролиферации служит подтверждением регуляционного принципа организации мозга позвоночных. Подобная «резервная избыточность» для беспозвоночных пока не известна.

Упозвоночных существует столь же развитая специализация участков головного и спинного мозга, как и у беспозвоночных. Каждый отдел головного мозга представляет собой аналитический центр, обслуживающий один или несколько органов чувств. В зависимости от уровня морфофункционального развития того или иного

органа чувств изменяется и морфологическая организация мозгового представительства. Если один из органов чувств становится доминирующим в поведении животного, то его представительство в головном мозге обычно увеличивается. Как правило, это сопряжено с формированием специализированной ассоциативной «надстройки» в доминирующем отделе. В процессе эволюции это неоднократно приводило к возникновению ассоциативных центров в совершенно разных отделах головного мозга и на различном сенсорном субстрате. Примером может служить среднемозговой центр амфибий, возникший

83

в результате опережающего развития зрения и органов боковой линии. Он имеет стратифицированную структуру, как в грибовидных телах насекомых, и является центром принятия решений и хранения индивидуального опыта. Многие костистые рыбы, обладающие электрорецепцией, имеют очень развитый задний мозг. Именно в нём и его деривате — мозжечке происходит анализ электрорецепторных сигналов из окружающего мира. Это приводит к появлению стратифицированных структур ассоциативно-аналитического типа уже в заднем мозге. Таким образом, как у беспозвоночных, так и у позвоночных ассоциативные центры являются своеобразной надстройкой над анализаторами и могут располагаться в различных структурных отделах центральной нервной системы. У позвоночных нейрогормональные клетки выделены в специализированный отдел — промежуточный мозг. Он столь же консервативен, как нейрогемальный орган беспозвоночных, и не меняет положения в мозге (Edinger, 1911; Nieuwenhuys, 1998).

Эти данные говорят не только о глубоких различиях, но и о сходстве развития и строения нервной системы позвоночных и беспозвоночных. Реконструируя пути усложнения морфологической организации мозга, можно предположить такую последовательность событий. На первом этапе исторического развития нервной системы из клеток эктодермального зачатка появились чувствительные элементы (см. рис. I-16). Специализированные клетки эктодермы обладали одновременно сенсорными и эффекторными функциями. Они рецептировали сигнал, проводили его к эффекторным органам и запускали их реакцию. Эти клетки были связаны между собой и формировали непрерывную сеть, которая не имела выраженных центров (см. рис. I- 12; I-14; I-16). Такой тип организации нервной системы мы встречаем у кишечнополостных. При появлении более сложных поведенческих задач элементы нервной системы стали объединяться в небольшие скопления. По-видимому, это происходило двумя путями. С одной стороны, формировались параллельные ганглии (см. рис. I-16) с синаптическими контактами между телами клеток. Этот примитивный тип концентрации нервных элементов отмечен у свободноплавающих кишечнополостных. С другой стороны, появились скопления нейронов с наружным расположением тел клеток и нейропилем из переплетённых отростков внутри ганглия (см. рис. I-16). Этот тип организации ганглиев оказался достаточно эффективным и сохранился до настоящего времени у большинства беспозвоночных. Такой ганглий обладает рядом преимуществ, которые имеют особое значение для животных с незамкнутой кровеносной системой. Тела его нейронов расположены

84

преимущественно на наружной поверхности, что позволяет поддерживать довольно высокий уровень метаболизма. Через открытую поверхность тел нейронов происходит снабжение питательными веществами, кислородом и отводятся токсичные продукты жизнедеятельности клеток. Нейропиль, находящийся внутри ганглия, даёт возможность формировать синаптокомплексы, обмениваться сигналами и формировать генерализованный ответ на разнообразные воздействия. По-видимому, из этой формы концентрации нервных элементов возникли головные и туловищные ганглии высших беспозвоночных, ганглии и нервная трубка позвоночных (см. рис. I-15; I-16).

В головных ганглиях беспозвоночных сложились два основных типа гистологических структур: островковые скопления тел клеток и стратифицированные грибовидные тела. Островковые скопления тел клеток беспозвоночных практически идентичны подкорковым и стволовым ядрам позвоночных. Организация грибовидных тел напоминает слоистое расположение клеток в коре млекопитающих. Однако грибовидные тела беспозвоночных не имеют упорядоченных вертикальных связей между нейронами. Тем не менее стратификация нейронов в грибовидных телах предполагает сходство механизмов обработки информации в ассоциативных центрах позвоночных и беспозвоночных животных.

Вероятно, нервная система позвоночных возникла из ганглиев беспозвоночных с нейропилем из переплетённых отростков (см. рис. I-16). Трубчатая нервная система сформировалась в результате выхода отростков нейронов из внутренней полости ганглия. Это событие привело к появлению нейропиля из отростков нервных клеток наружной стороны нервной трубки. Дальнейшее формирование новых нервных центров происходило преимущественно вокруг желудочков, в толще наружного переплетения отростков. В результате возникли центральное серое вещество и окружающие его волокна (белое вещество). Часть клеток выселялась из прижелудочковой зоны и формировала структуры ядерного или стратифицированного типа во внешнем нейропиле (см. рис. I-16). У высших позвоночных центральное серое вещество практически отсутствует, а основные нервные центры мозга представлены сложными ядрами и корковыми структурами различных типов (см. рис. I-15, в). В дальнейшем цефализация позвоночных развивалась по принципу количественного наращивания анатомического представительства анализаторных систем и ассоциативных центров. В отличие от беспозвоночных, нервная система трубчатого типа при замкнутой кровеносной системе может бесконечно увеличиваться в размерах. Это позволило позвоночным достигнуть очень высокого развития умственных способностей.

85

Подводя итог краткому обзору основных принципов анатомической и гистологической интеграции нервных клеток у беспозвоночных и позвоночных животных, необходимо сделать несколько общих выводов. Вопервых, нейроны в обеих группах животных имеют сходное строение, но различаются по линейным размерам. Во-вторых, интегративные взаимодействия между нейронами осуществляются в сходных гистологических образованиях: ганглиях, ядрах и стратифицированных структурах. Эти образования встречаются как у беспозвоночных, так и у позвоночных животных.