Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзаменационные билеты.doc
Скачиваний:
180
Добавлен:
04.06.2014
Размер:
868.86 Кб
Скачать

65.Система линейных уравнений. Метод Гаусса.

Ме́тод Га́усса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Это метод последовательного исключения переменных, когда с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которого последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные.

Решить систему уравнений методом Гаусса:

                                                      x +  y - 3z = 2,

                                                    3x - 2y +  z = - 1,

                                                    2x +  y - 2z = 0.

Решение. Выпишем расширенную матрицу данной системы

и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:

~ ;

б) третью строку умножим на (-5) и прибавим к ней вторую:

.

В результате всех этих преобразований данная система приводится к треугольному виду:

                                                    x + y - 3z = 2,

                                                    -5y + 10z = -7,

                                                           - 10z = 13.

Из последнего уравнения находим z = -1,3. Подставляя это значение во второе уравнение, имеем y = -1,2. Далее из первого уравнения получим x = - 0,7.

66. Ранг матрицы.

Рангом матрицы А называется наивысший порядок минора матрицы А , отличного от нуля.

Вычисляется:

1)Умножение строки(столбца) на числ, отличное от нуля.

2)Прибавление к одной строке(столбцу) другой, умножение на любое число.

3)Перемена местами двух строк(столбцов)

4)Вычёркивание нулевой строки

Первую строку умножим на и прибавим ко второй. Получим строку. Первую строку умножим наи прибавим к третьей. Получим строку. Первую строку умножим наи прибавим к четвертой. Получим строку. В итоге имеем матрицу

Вторую строку оставляем без изменений. К третьей строке прибавляем вторую, умноженную на 2. Получим строку . К четвертой строке прибавляем вторую. Получим нулевую строку. Преобразованная матрица имеет вид

Поменяем местами третий и четвертый столбцы:

Базисный минор матрицы стоит в первых трех столбцах и первых трех строках,. Следовательно,.

67.Теорема Кронекера – Капели

Теорема Кронекера — Капе́лли —Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы, причём система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.

Доказательство (условия совместности системы)

Необходимость

Пусть система совместна. Тогда существуют числа такие, что. Следовательно, столбец b является линейной комбинацией столбцовматрицы A. Из того, что ранг матрицы не изменится, если из системы его строк (столбцов) вычеркнуть или приписать строку (соответственно столбец), которая является линейной комбинацией других строк (соответственно столбцов) следует, что.

Достаточность

Пусть . Возьмем в матрице A какой-нибудь базисный минор. Так как, то он же и будет базисным минором и матрицы B. Тогда согласно теореме о базисномминоре последний столбец матрицы B будет линейной комбинацией базисных столбцов, то есть столбцов матрицы A. Следовательно, столбец свободных членов системы является линейной комбинацией столбцов матрицы A.