Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпаргалка для экзамена по микробиологии.doc
Скачиваний:
1495
Добавлен:
30.05.2014
Размер:
1.55 Mб
Скачать

Биологические эффекты комплемента

Биологические активности системы комплемента можно подразделить на полезные для организма-хозяина и вредные.

Основные полезные эффекты комплемента:

•    содействие в уничтожении микроорганизмов;

•    интенсивное удаление иммунных комплексов;

•    индукция и усиление гуморального иммунного ответа.

Система комплемента может вызывать повреждение клеток и тканей собственного организма в следующих случаях:

•  если происходит ее генерализованная массированная активация, например при септицемии, вызванной грамотрицательными бактериями;

•  если ее активация происходит в очаге тканевого некроза, в частности при инфаркте миокарда;

•    если активация происходит при аутоиммунной реакции в тканях.

Усиление ликвидации микробов достигается несколькими путями, включая:

•    образование анафилатоксинов, которые повышают проницаемость стенок сосудов, облегчая тем самым поступление в очаг инфекции других защитных факторов воспалительной реакции;

•    опсонизация микробов для усиления фагоцитоза;

•    внедрение лизирующего мембрану комплекса в мембрану микробных клеток.

Активация системы комплемента приводит к образованию анафилатоксинов С3а и С5а, физиологическая роль которых состоит в привлечении клеток воспалительного экссудата в очаг воспаления, а также в активации их эффекторных механизмов.

  1. Иммунокомпетентные клетки. Т- и В- лимфоциты. Макрофаги. Их кооперация в иммунном ответе.

Ведущая эффекторная роль в деятельности иммунной системы принадлежит мигрирующим

лимфоцитам. Лимфоцит является функциональным элементом в реакциях клеточного иммунитета,

предшественником плазматической клетки, продуцирующей иммуноглобулины, носителем

иммунологической памяти, индуктором иммунологической толерантности (неотвечаемости на

антиген).

Т-лимфоциты обеспечивают клеточные формы иммунного ответа (гиперчувствительность

замедленного типа, трансплантационный иммунитет, противоопухолевый иммунитет и т. д.), а

В-лимфоциты отвечают за гуморальный иммунитет (все виды антител ообразования). Т- и В-

системы лимфоцитов взаимодействуют между собой и макрофагальной системой, при этом Т-

система по отношению к В-системе является регулирующей.

К мононуклеарным фагоцитам (макрофагам) относятся фагоциты, циркулирующие в

периферической крови, а также тканевые макрофаги. Они образуются в костном мозге из

полипо-тентной стволовой клетки, после нескольких стадий развития попадают в кровоток в

виде моноцитов. Тканевые макрофаги формируются частично из моноцитов, а частично . в

процессе пролиферации макрофагов.

Под микроскопом или путем окрашивания различать Т- и В-клетки не удается . это возможно

только с помощью растровой электронной микроскопии. Для В-лимфоцитов характерна

ворсинчатая поверхность, Т-клетки более гладкие, ворсинок .чень мало. Когда В-клетки

начинают продуцировать иммуноглобулины, на их поверхности возникают шарообразные

структуры.

Моноциты имеют дольчатую структуру. На поверхности лимфоцитов существуют специфические

мембранные рецепторы, которые служат антигенами этих клеток. В настоящее время с помощью

моноклональных антител можно идентифицировать важнейшие субпопуляции лимфоцитов и

моноцитов по антигенной структуре. В 80-х годах была принята международная номенклатура

дифференцированных антигенов лейкоцитов человека (CD-claster of differentiation).

Зрелые В-лимфоциты на клеточной мембране имеют иммуноглобулины, играющие роль

антигенспецифических рецепторов. После антигенной стимуляции В-лимфоциты переходят в

плазматические клетки, которые резко усиливают синтез иммуноглобулинов определенной

специфичности.

У нормальных животных постоянно возникают и разрушаются популяции клеток, вырабатывающих

антитела к тому или иному антигену или осуществляющих клеточные иммунные реакции.

Лимфоидная система не содержит готовых морфологических структур, способных постоянно

отвечать надежной защитной реакцией на новые антигены.

Как было сказано, Т-лимфоциты имеют несколько субпопуляций с различными физиологическими

функциями.

Т-хелперы относятся к регулирующим клеткам. Получив от макрофагов информацию об

антигене, Т-хелперы с помощью иммуноцитокинов (ИЛ-2) передают сигнал, усиливающий

пролиферацию Т- и В-лимфоцитов нужных клонов, превращая их в активированные Т-эффекторы

или плазматические антитело-продуцирующие клетки.

Т-супрессоры тоже относятся к регуляторам иммунного ответа. Эти клетки являются

антагонистами Т-хелперов и блокируют развитие гуморального и клеточного иммунитета.

Т-эффекторы (или Т-киллеры) ответственны за клеточный иммунитет в различных его

проявлениях: разрушают опухолевые клетки, трансплантированные клетки, мутировавшие

клетки собственного организма, участвуют в гиперчувствительности замедленного типа. Это

цитоцидные клетки, разрушающие клетки-мишени при непосредственном контакте за счет

выделяемых ферментов-токсинов или в результате активации в клетках-мишенях лизосомальных

ферментов.

Т-амплифайеры . клетки, усиливающие действие тех или иных субпопуляций Т-лимфоцитов.

Нулевые клетки . лимфоциты без отличительных признаков Т- и В-клеток. Тот факт, что они

встречаются среди лимфоцитов костного мозга в 50 % случаев, а среди лимфоцитов крови в 5

% случаев, позволяет предположить, что это незрелые формы лимфоцитов, хотя и обладающие

цитотоксической активностью.

Естественные киллеры Natural killer, или NK-клетки, также нельзя по морфологическим или

антигенным свойствам отнести ни к Т-, ни к В-лимфоцитам, но они активно участвуют в

противоопухолевом иммунитете, отторжении трансплантата.

Существуют В- и Т-клетки памяти. Это долгоживущие лимфоциты, сохраняющие после

первичного контакта с антигеном информацию о нем в течение месяцев, лет, десятилетий.

При вторичном попадании того же антигена происходит стимуляция

этого клона клеток. В-клетки быстро пролиферируют и превращаются в плазматические,

которые продуцируют антитела нужной специфичности.

Таким образом, функции иммунитета осуществляют три вида иммунокомпетентных клеток:

макрофаги, Т-лимфоциты и В-лимфоциты. Деятельность этих клеток, направленная на

распознавание и уничтожение генетически чужеродных веществ, т. е. поддержание

гомеостаза, осуществляется в содружестве друг с другом, в так называемом кооперативном

взаимодействии. Кооперацию клеток (рис. 9.3) осуществляют медиаторы, иммуноци-токины и

другие регуляторные вещества и механизмы.

ИММУНОКОМПЕТЕНТНЫЕ КЛЕТКИ

Нейтрофилы.

В отсутствие воспалительного процесса нейтрофилы, в основном , находятся в кровеносном русле, где они составляют большую часть циркулирующих лейкоцитов. В ответ на воспалительный стимул происходит быстрое массивное перераспределение нейтрофилов в поврежденные ткани. Это основные эффекторные клетки при остром воспалении. При нейтропении развиваются частые и тяжелые инфекции. Ежедневный выход из костного мозга в норме составляет 10 гранулоцитов, но он может повышаться в несколько раз, тогда из резерва выходят менее зрелые клетки, что проявляется «сдвигом влево», который расценивают как признак острой инфекции. Нейтрофилы рассматриваются как первая линия защиты. Нижним лимитом считается содержание 1800-2000 гранулоцитов в мкл крови. При снижении до 1500 клеток это проявляется нарушением течения местного острого воспалительного процесса. При падении ниже 500 клеток прогрессивно нарастает частота инфекции. При уровне 100 все больные имеют инфекционные осложнения.

Эозинофилы.

Это эффекторные клетки воспаления, обладающие широким набором цитотоксических воздействий. Они реализуют свои эффекторные функции через различные механизмы, которые можно разделить на некислородзависимые, кислородзависимые, гуморальные.

Некислородзависимые - в присутствии перекиси водорода убивают гельминтов, являются токсичными для опухолевых клеток, клеток млекопитающих.

Кислородзависимые - генерация токсических кислородных радикало. Этот эффект токсичен для ряда бактерий (в частности E. Coli), грибов, паразитов, опухолевых и тучных клеток.

Гуморальные механизмы обеспечивают регуляцию по принципу «обратной связи».

Наблюдается положительная корреляция между зозинофилией в опухолевой ткани и степенью выживаемости. Онкологические больные, отвечающие на лучевую терапию зозинофилией периферической крови, живут в два раза дольше, чем больные, у которых такая терапия не индуцировала эозинофильный ответ.[Romagnini S.,1992]

Моноциты (макрофаги).

Макрофаги постоянно созревают из циркулирующих в крови моноцитов, имеющих костномозговое происхождение. Они принимают самое активное участие в раннем воспалительном ответе на инфекцию, в запуске специфического иммунного ответа. В очаге острого воспаления в первые часы моноциты\макрофаги составляют менее 5% клеток, однако через 24-48 часов от начала воспаления макрофаги становятся доминирующими клетками» приходя на смену быстро гибнущим нейтрофилам. Захват и переработка макрофагами возбудителя является первой фазой индукции специфического иммунного ответа. Защитная роль фагоцитоза макрофагами зависит от завершенности этого процесса.

Тромбоциты.

Они проявляют способность к хемотаксису и фагоцитозу, содержат и высвобождают различные белки, активируют комплемент, взаимодействуют с паразитами и бактериями, содержат множество вазоактивных веществ. Они представляют собой богатый источник биоактивных веществ, способных индуцировать или усилить воспалительную реакцию. Они способны абсорбировать бактерии и фагоцитировать их благодаря особенностям мембраны и внутриклеточных структур, выполняя условно опсонизирующую функцию, подготавливая объект фагоцитоза к встрече с профессиональными фагоцитами. Агрегируя вокруг внедрившихся микроорганизмов, тромбоциты облегчают их клиренс из циркуляции, снижая, таким образом, риск развития сепсиса. Они продуцируют цитотоксические свободные радикалы, в достаточных концентрациях, способные убивать паразитов.

Клетки, осуществляющие иммунный ответ

Многие виды клеток различного происхождения предназначены для выполнения специализированных функций в иммунном ответе. Центральная роль всегда принадлежит лейкоцитам . Это лимфоциты , фагоциты и ряд вспомогательных клеток.

Две главные популяции лимфоцитов названы B-клетками и T-клетками . Обе популяции специализированы по функциям. B-клетки образуют антитела . Цитотоксические T-лимфоциты уничтожают клетки, инфицированные вирусами. Хелперные T-лимфоциты координируют иммунный ответ путем контактных межклеточных взаимодействий и выделения в межклеточную среду цитокинов , осуществляющих межклеточную передачу сигналов, в том числе помогая B-клеткам в образовании антител. Обе популяции (B- и T-клетки) экспрессируют на своей поверхности антигенраспознающие рецепторы и другие молекулы ( маркеры клеточной поверхности ), с помощью которых осуществляют разнообразные функции.

Лимфоциты третьей популяции, имеющие морфологию больших гранулярных лимфоцитов (БГЛ) , не экспрессируют антигенраспознающие рецепторы и названы нормальными (естественными) клетками-киллерами (НК) .

Подобно лимфоцитам, фагоциты также представлены двумя популяциями: мононуклеарными фагоцитами ( моноцитами / макрофагами ) и полиморфноядерными гранулоцитами , часто называемые просто нейтрофилами .

К вспомогательным клеткам относятся базофилы , тучные клетки , тромбоциты .

Предшественниками всех клеток иммунной системы служат плюрипотентные гемопоэтические стволовые клетки (ГСК) .

Фазы иммунного ответа

Любой иммунный ответ связан с активацией лимфоцитов, специфически распознающих антиген и участвующих в механизмах, которые вызывают эффект ответа, т.е. элиминацию антигена. Иммунный ответ можно подразделить на три фазы:

· Распознавание антигена. В эту фазу происходит связывание чужеродного антигена со специфическими рецепторами зрелых лимфоцитов, существовавших еще до антигенной стимуляции.

· Активация лимфоцитов. Эта фаза включает последовательные процессы, происходящие в лимфоцитах после распознавания антигена. Во-первых, происходит значительное увеличение числа клонов антигенспецифичных клеток и усилению иммунного ответа. Во-вторых, происходит дифференциация лимфоцитов из клеток, осуществляющих первичные функции, в клетки, способствующие уничтожению чужеродного антигена.

Элиминация антигена (эффекторная фаза). Эта фаза является стадией, при которой лимфоциты, специфически активированные антигеном, выполняют функцию элиминации. Лимфоциты, участвующие в этой фазе иммунного ответа, называют эффекторными клетками.

  1. Определение понятия "антиген". Полноценные и неполноценные антигены. Антигены бак­ териальной клетки.

Антиген - генетически чужеродное вещество (белок, полисахарид, липополисахарид, липопротеин, нуклеопротеин), способное, при введении в организм или при образовании в организме, вызывать специфический иммунный ответ и взаимодействовать с антителами и антигенраспознающими клетками.

Гаптен - неполноценный антиген в виде небольшой химической группы; обуславливает специфичность антител при иммунизации комплексом белок-таптен. Самостоятельно гаптен не вызывает образования антител, но может взаимодействовать с антителами.

Понятие об аг, свойства аг

Аг- генетически чужеродные для организма в-ва, основным св-вом которых яв-ся способность при поступлении в рганизм вызывать образование специфич-их ат;сп-ть вступать с ат.в соединения. Антигенами яв-ся в-ва белковой природы или смесь белков с липидами,углеводами.Аг.бывают: полноценными -высокомолекулярные белки; неполноценные(гаптены)- не способные вызывать выработку спеииф-их ат.в организм е, но могут взаимодейст-ть со специф-ми ат.Гаптены могут стать полноценными аг,при добав-ие не значит-го кол-ва белка в организм.Молекула белка(проводник) яв-ся носителем для гаптена.

Антигены бактерий:соматический О-антиген, жгутиковый Н-антиген и капсульныи К-антиген, в частности Vi-антиген. О- и Н-антигены обычно выявляют в реакции агглютинации.

Аутоантигены – антигены, образованные из белков собственных тканей, изменивших свои физико-химические свойства под воздействием различных факторов (токсины и ферменты бактерий, лекарственные вещества, ожоги, обморожения, облучение). Такие, измененные белки становятся чужеродными для организма, и организм отвечает выработкой антител, т.е. возникают аутоиммунные заболевания.

Если рассматривать антигенные свойства микроорганизма, то можно отметить, что антигенный состав – это достаточно постоянная характеристика любого микроорганизма. В антигеном комплексе чаще всего встречаются общеродовые антигены (общие для представителей данного рода), группоспецифические (присущие определенной группе), видоспецифические (присущие всем особям данного вида), и штаммоспецифические.

По локализации антигены могут быть поверхностные (К-антигены – антигены клеточной стенки), соматические (О-антигены, локализованы во внутреннем слое клеточной стенки, термостабильны) и жгутиковые (Н-антигены, присутствуют у всех подвижных бактерий, термолабильны). Многие из них активно секретируются клеткой в окружающую среду. В тоже время, существуют гидрофобные антигены, прочно связанные с клеточной стенкой.

Кроме того, патогенные микроорганизмы способны выделять ряд экзотоксинов. Экзотоксины обладают свойствами полноценных антигенов с выраженной неоднородностью в пределах рода и вида. Споры бактериальной клетки также обладают антигенными свойствами: они содержат антиген, общий для вегетативной клетки и споры.

Патогенные микроорганизмы ведут постоянную борьбу с иммунной системой путем изменения структуры поверхностных антигенов. Изменения чаще всего появляются в результате точечных мутаций, в результате появляются варианты существующих антигенов.

Св-ва:

1.Чужеродность, прояв-ся если аг.поступает парэнтерально.в кот-ой происходит расщепление аг.и потеря его антигеных св-в.

2 .макромолекулярность(в-ва с высокой молекулярной массой),чем крупнее мол-ла аг.,тем выше ее антигеная способность.

3.коллоидное состояние аг,-аг. должен быть в растворенном состоянии.Ни одно в-во в кристаллическом виде не обладает антигенной способностью.

4. Антигенность. Способность аг вызывать имун ответ, на каждый аг свое ат.

5. Иммуногенность. Способность создавать иммунитет.

6. Специфичность. Отличие аг друг от друга по ЭПИТОПУ

Полноценные антигены вызывают в организме синтез антител или сенсибилизацию лимфоцитов и вступают с ними в реакцию как in vivo, так и in vitro. Для полноценных антигенов характерна строгая специфичность, т.е. они вызывают в организме выработку только специфических антител, вступающих в реакцию только с данным антигеном.

Неполноценные антигены (гаптены) представляют собой сложные углеводы, липиды и другие вещества, не способные вызвать образование антител в организме, но вступающие с ними в специфическую реакцию. Добавление к гаптенам небольшого количества белка придает им свойства полноценного антигена.

Антиген содержит несколько различных или повторяющихся эпитопов.

Эпитоп (антигенная детерминанта) - отличительная часть молекулы антигена, обусловливающая специфичность антител и эффекторных Т- лимфоцитов при иммунном ответе. Эпитоп комплементарен активному центру антител или Т-клеточному рецептору. Антигены, вызывающие аллергию, называются аллергенами, а иммунологическую толерантность - толерогенами.

  1. Структура иммуноглобулинов различных классов и их функции.

ИММУНОГЛОБУЛИНЫ (лат. immunis свободный, избавленный от чего-либо + globulus шарик) - сывороточные и секреторные белки человека или животных, обладающие активностью антител и участвующие в механизме защиты против возбудителей инфекционных болезней.

Bммуноглобулины продуцируются В-лимфоцитами (плазматическими клетками). Мономеры иммуноглобулинов состоят из двух тяжелых (Н-цепи) и двух легких (L-цепи) полипептидных цепей, связанных дисульфидной связью. Эти цепи имеют константные (С) и вариабельные (V) участки. Папаин расщепляет молекулу иммуноглобулина на два одинаковых антигенсвязывающих фрагмента - Fab (Fragment anligen binding) и Fc (Fragmenl crislalhzable). По типу тяжелой цепи различают 5 классов иммуноглобулинов IgG, IgM, IgA, IgD, IgE.

В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM, IgG, IgA, IgE, IgD.

Иммуноглобулины – белки с четвертичной структурой, т.е. их молекулы построены из нескольких полипептидных цепей. Молекула каждого класса состоит из четырех полипептидных цепей – двух тяжелых и двух легких, связанных между собой дисульфидными мостиками. Легкие цепи – структура общая для всех классов иммуноглобулинов. Тяжелые цепи имеют характерные структурные особенности, присущие определенному классу, подклассу.

Антитела, входящие в определенные классы иммуноглобулинов, обладают различными физическими химическими, биологическими и антигенными свойствами.

Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса). Все указанные антигенные различия определяются с помощью специфических сывороток.

Иммуноглобулины: сывороточные, секреторные, поверхностные.

Классы Ig:

IgG – нейтрализуют токсины, проходят сквозь плаценту, вторичная или хронич. инфекция.

IgM – первый иммунный ответ, не проходят сквозь плаценту, способны агглютинировать бакт, нейт-вать вирусы, связывать комплемент, ат-ать фагоцитоз.

IgA – секреторные и сывороточные, местный иммунитет.

IgE – АГ аллергии и гиперчувствительности.

IgD – на поверхности В-л, играют роль аутоиммунных ипр.

  1. Антитела, природа и функция антител. Антителообразование: первичный и вторичный от­ веты.

В организме у-

Вырабатываются плазмоцитами.

Антитела - иммуноглобулины, продуцируемые В-лимфоцитами (плазматическими клетками). Мономеры иммуноглобулинов состоят из двух тяжелых (Н-цепи) и двух легких (L-цепи) полипептидных цепей, связанных дисульфидной связью. Эти цепи имеют константные (С) и вариабельные (V) участки. Папаин расщепляет молекулу иммуноглобулина на два одинаковых антигенсвязывающих фрагмента - Fab (Fragment anligen binding) и Fc (Fragmenl crislalhzable). По типу тяжелой цепи различают 5 классов иммуноглобулинов IgG, IgM, IgA, IgD, IgE.

Активный центр антител - антигенсвязывающий участок Fab-фрагмента иммуноглобулина, образованный гипервариабельными участками Н- и L-цепей, связывает эпитопы антигена. В активном центре имеются специфичные комплементарные участки к определенным антигенным эпитопам Fc-фрагмент может связывать комплемент, взаимодействует с мембранами клеток и участвует в переносе IgG через плаценту.

Домены антител - компактные структуры, скрепленные дисульфидной связью. Так, в IgG различают: V-домены легких (VL) и тяжелых (VH) цепей антитела, расположенные в N-концевои части Fab-фрагмента; С-домены константных участков легких цепей (СL) ; С-домены константных участков тяжелых цепей (СH1, СH2, СH3). Комплементсвязывающий участок находится в СH2-домене.

Изотип антител (класс, подкласс иммуноглобулинов - IgM, IgGl, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE) определяется С-доменам тяжелых цепей; выявляется с помощью антисыворотки против Fc-фрагментов тяжелых цепей в реакции радиальной иммунодиффузии и др.

Идиотип антител определяется антигенсвязывающими центрами Fab-фрагментов антител, т.е. антигенными свойствами вариабельных участков (V-областей). Идиотип состоит из набора идиотопов - антигенных детерминант V-области антитела.

Некоторые функциональные особенности антител

Антитела, например IgG, вместе с другими onсонинами усиливают фагоцитоз.

Аффинность (аффинитет) антител - сродство антител к антигенам.

Авидность антител - прочность связи антитела с антигеном и количество связанного антигена антителами.

Антитела – белки, относящиеся к иммуноглобулинам, которые синтезируются лимфоидными и плазматическими клетками в ответ на попадание в организм антигена, обладающими способностью специфически связываться с ним. Антитела составляют более 30% белков сыворотки крови, обеспечивают специфичность гуморального иммунитета благодаря способности связываться только с тем антигеном, который стимулировал их синтез.

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вируснейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплементсвязывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

В соответствии с Международной классификацией сывороточные белки, несущие функцию антител, получили название иммуноглобулинов (Ig). В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM, IgG, IgA, IgE, IgD.

Синтез и динамика образования антител

Антитела вырабатывают плазматические клетки селезенки, лимфатических узлов, костного мозга, пейеровых бляшек. Плазматические клетки (антителопродуценты) происходят из предшественников В-клеток после их контакта с антигеном. Механизм синтеза антител аналогичен синтезу любых белков и происходит на рибосомах. Легкие и тяжелые цепи синтезируются отдельно, затем соединяются на полирибосомах, а окончательная их сборка происходит в пластинчатом комплексе.

Динамика образования антител.

При первичном иммунном ответе в антителообразовании различают две фазы: индуктивную (латентную) и продуктивную. Индуктивная фаза – это период от момента парентерального введения антигена до появления антигенреактивных клеток (продолжительность не более суток). В эту фазу происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза IgM. Вслед за индуктивной фазой наступает продуктивная фаза антителообразования. В этот период, примерно до 10…15 суток уровень антител резко возрастает, при этом уменьшается число клеток, синтезирующих IgM, и нарастает продукция IgA.

Механизм образ-я антител

АТ выраб-ся плазматич-ми кл, нах-ся в селе­зенке, л/у, костном мозге, пейероаых бляшках. Плазматич-е кл (АТ-продуценты) происходят из предшественников В-кл, подвергшихся контакту с АГ. В-кл и их потомки функционир-т по клональному принципу: по мере развития иммунного ответа они дифферннцир-ся и созревают. Механизм; синтез AT происходит на рибосомах. Легкие и тяжелые цепи, из кот состоит мол AT, синтезир-ся отдельно, затем соединяются на полирибосо­мах, и окончат-я сборка происходит в пла­стинчатом комплексе. Одна плазмати-я кл может переключаться с синтеза IgM на синтез IgG.

В первичном иммунном ответе в АТобр-ии различают 2 фазы:1)индуктивную (латентную) - от момента введения АГ до появления лимфойдных АГ реактивных кл (не более суток), происходит дифференцировка лим­фойдных кл в направлении синтеза IgM и 2)продуктивную (10-1 5 дней) - кол-во AT резко увелич-ся и нарастает продукция IgG. Вторичный иммунный ответ базир-ся на иммунологич-й памяти (Т- и В-лнмфоцитов) при повторном введении АГ - уси­ленный ответ.

Первичный и вторичный иммунный ответ.

Первичный наблюдается при первичном введении АГ. Для начала процесса синтеза антител (АТ) достаточно кратковременного (5-15мин) контакта АГ с иммунокомпетентными клетками. В первые 6-12 ч (не более 20) после первичного введения антигена (АГ) протекает индуктивная фаза АТ-образования. Происходит распознавание обработка АГ МФ, передача АГ-ой информации Лимф, образование плазмоцитов. 2-я фаза – продуктивная. Кол-во АТ в теч.4-15 дней растет экспоненциально. С начала продуктивной фазы преобладают синтез IgM, затем сменяется на синтез IgG.

Затем фаза врем. рефрактерности – это срок, необхдимая для восстановления полной чувствительности иммунокомпетентных органов и он определяет интервалы м/у введением иммуногенов. После первичного ИО образуется определенное количесвтво долгоживущих клеток памяти, которые сохраняют информацию об АГ и при повторном попадании в организм обуславливают. вторичный ИО. Он характеризуется признаками:

- стимулируется меньшей дозой АГ

- продукция АТ начинается быстрее (индуктивная фаза 5-6 ч)

- характеризуется выработкой большего кол-ва АТ (не менее чем в 3 раза чем при первичном ИО)

- пик синтеза Ig раньше (3-5 день)

- аффинитет АТ выше

- вырабатываются АТ большей авидности

- IgG сразу характеризуются высокой аффинностью (при первичном ИО аффинность их вначале невысокая)

- синтезированные АТ дольше сохраняются в организме

  1. Гиперчувствительность, ее типы. Механизмы возникновения, клиническая значимость.

Сущность аллергии. В отличие от иммунологических реакций на введение антигена,

выражающихся в антителообразовании, клеточных защитных реакциях, толерантности,

существует особый тип реагирования на антиген, связанный с повышенной чувствительностью

(гиперчувствительностью), или гиперергией, к антигену, что сопровождается, как правило,

патологической реакцией. Эту необычную, иную форму реагирования на антиген называют

аллергией

Гиперчувствительность немедленного типа (ГНТ)

Возникает после повторного введения антигена (аллергена) спустя несколько минут; Оба типа аллергии отличаются не только быстротой клинического проявления, но и механизмом их развития. К ГНТ относят анафилаксию, атопические реакции и сывороточную болезнь.

-Анафилаксия (от греч. ana — против, phylaxia — защита) — состояние повышенной чувствительности сенсибилизированного организма на повторное парентеральное введение чужеродного белка. Анафилаксия впервые была открыта Портье и Рише в 1902г. Первая доза антигена (белка), вызывающая повышенную чувствительность, называется сенсибилизирующей (лат. sensibilitas — чувствительность), вторую дозу, после введения которой развивается анафилаксия, — разрешающей, причем разрешающая доза должна в несколько раз превышать сенсибилизирующую.

-Пассивная анафилаксия. Анафилаксию можно искусственно воспроизвести у здоровых животных пассивным путем, т. е. введением иммунной сыворотки сенсибилизированного животного. В результате у животного через несколько часов (4...24) развивается состояние сенсибилизации. При введении такому животному специфического антигена проявляется пассивная анафилаксия.

-Атопии (греч. atopos — странный, необычный). К ГНТ относят атопии, которые представляют собой естественную сверхчувствительность, спонтанно возникающую у предрасположенных к аллергии людей и животных. Атопические заболевания более изучены у людей — это бронхиальная астма, аллергический ринит и конъюнктивит, крапивница, пищевая аллергия к землянике, меду, яичному белку, цитрусовым и др. Пищевая аллергия описана у собак и кошек на рыбу, молоко и другие продукты, у крупного рогатого скота отмечена атопическая реакция типа сенной лихорадки при переводе на другие пастбища. В последние годы очень часто регистрируют атопические реакции, вызванные лекарственными препаратами — антибиотиками, сульфаниламидами и др.

-Сывороточная болезнь. Сывороточная болезнь развивается через 8... 10 суток после однократного введения чужеродной сыворотки. Болезнь у людей характеризуется появлением сыпи, напоминающей крапивницу, и сопровождается сильным зудом, повышением температуры тела, нарушением сердечно-сосудистой деятельности, опуханием лимфатических узлов и протекает без смертельных исходов.

Гиперчувствительность замедленного типа (ГЗТ).

ГЗТ проявляется спустя несколько часов (12...48), а иногда и дней. Впервые этот тип реакции обнаружил Р. Кох в 1890 г. у больного туберкулезом при подкожном введении туберкулина. В дальнейшем было установлено, что существует ряд антигенов, которые стимулируют преимущественно Т-лимфоциты и обусловливают главным образом формирование клеточного иммунитета. В организме, сенсибилизированном такими антигенами, на основе клеточного иммунитета формируется специфическая гиперчувствительность, которая проявляется в том, что через 12...48 ч на месте повторного введения антигена развивается воспалительная реакция. Ее типичным примером является туберкулиновая проба. Внутрикожное введение туберкулина больному туберкулезом животному вызывает на месте инъекции отечную болезненную припухлость, повышение местной температуры. Реакция достигает максимума к 48 ч.

Следует отметить, что в некоторых случаях аллергическая реакция отсутствует у больного (сенсибилизированного) животного, это явление получило название анергии (ареактивности). Анергия может быть положительной и отрицательной. Положительная анергия отмечается, когда иммунобиологические процессы в организме активированы и контакт организма с аллергеном быстро приводит к его элиминации без развития воспалительной реакции. Отрицательная анергия обусловливается ареактивностью клеток организма и возникает, когда защитные механизмы подавлены, что свидетельствует о беззащитности организма.

  1. Инфекционная аллергия и методы ее выявления.

Повышенную чувствительность к аллергенам (антигенам) патогенных микробов и продуктам их жизнедеятельности называют инфекционной аллергией. Она играет важную роль в патогенезе и развитии таких инфекционных болезней, как туберкулез, бруцеллез, сап, аспергиллез и др. При выздоровлении животного гиперергическое состояние еще долго сохраняется. Специфичность инфекционных аллергических реакций позволяет использовать их с диагностической целью. Промышленным способом на биофабриках готовят различные аллергены — туберкулин, маллеин, бруцеллогидролизат, тулярин и др.

Инфекционная аллергия - это состояние повышенной чувствительности к повторному контакту с микроорганизмами или продуктами их жизнедеятельности. Развивается при многих инфекционных болезнях; играет большую роль в их патогенезе и сохраняется длительное время после выздоровления. Инфекционная аллергия наблюдается при туберкулезе, бруцеллезе, сифилисе и др.

Специфичность реакций при инфекционной аллергии используют для диагностики многих инфекционных болезней (туберкулез, бруцеллез, туляремия и др.) - применяют кожно-аллергические пробы. Внутрикожно или накожно вводят очень небольшие количества аллергенов - фильтраты или лизаты культур, взвеси бактерий, убитых нагреванием или химическими веществами и т. п.

При повышенной чувствительности в месте введения аллергена возникает реакция: покраснение, припухлость, болезненность. Иногда развиваются и общие реакции: слабость, недомогание, обострение общего процесса (например, после введения туберкулина при туберкулезе).

  1. Реакции агглютинации.

Реакция агглютинации бактерий протекает в две фазы. Первая, специфическая, невидимая фаза реакции агглютинации состоит во взаимодействии антител с антигенными детерминантами, расположенными на поверхности бактерий и других корпускулярных частиц. Вторая, видимая, фаза реакции, протекающая лишь в присутствии электролита в среде, заключается в склеивании и оседании на дно пробирки иммунных комплексов в виде хлопьев или зерен, видимых невооруженным глазом.

Кроме специфической агглютинации бактерий, вызванной антителами, возможна спонтанная агглютинация (в отсутствие иммунной сыворотки). Спонтанную агглютинацию дают R-фор-мы бактерий, не образующие гомогенной взвеси в изотоническом растворе хлорида натрия и осаждающиеся в виде клеточных агрегатов. При кислой реакции среды в результате снятия одноименного заряда с поверхности бактериальных клеток в изоэлектрической зоне происходит склеивание — наступает «кислотная» агглютинация.

В лабораторной диагностике инфекционных заболеваний реакцию агглютинации очень часто применяют как для идентификации видов и сероваров бактерий с помощью диагностических агглютинирующих сывороток, так и для определения присутствия антител в сыворотке больного по известным антигенам (диагностикумам), т. е. для серодиагностики.

Реакция агглютинации.

Сущность реакции заключается во взаимодействии антител-агглютинов и антигена-агглютиногена, в результате которого образуется комплекс АГ+АТ, выпадающий в осадок-агглютинат.

Готовят сыворотку, разводят стандартный антиген физ раствором 1:10 и ставят реакцию. В 4-х пробирках делают разведения Ат –0,5мл 1:50,1:100,1:200, 1:400, и приливают в каждую по 0,5мл АГ 1:10. Пробирки встряхивают и ставят в термостат на 16-20 часов, потом в течении часа при комнатной t. Учет микроскопически.

Оценка реакции

++++ полное осветление, зонтик

+++ жидкость слегка опалесцирует, зонтик

++ жидкость мутная, зонтик слабо выраж.- реакция «+»

+ жидкость мутная, осадок в виде точки - реакция «-»

Можно ставит РА пластинчатым (капельным) методом.

«+» - первые 5 мин видны крупинки и хлопья минего цвета, жидкость просветляется.

«-» - смесь гомогенна.

Реакция латекс-агглютинации

Реакция латекс-агглютинации является одним из видов реакции агглютинации, в которой в качестве носителя антигена или антитела используются синтетические полимерные частицы - латексы.

Эта реакция применяется с целью: 1) обнаружения присутствия антител в сыворотке крови обследуемых лиц; 2) идентификации возбудителя заболевания.

Для приготовления антигенного латексного диагностикума растворимые мелкодисперсные антигены бактериальной клетки белковой или полисахаридной природы адсорбируют на поверхности окрашенных частиц инертного монодисперсного латекса. Такие нагруженные бактериальным антигеном латексные частицы склеиваются под действием иммунной сыворотки, содержащей антитела против данного антигена, что приводит к образованию характерного осадка - тонкой пленки с неровными краями ("зонтик").

Реакция непрямой (пассивной) гемагглютинации (РПГА).

Данную реакцию относят к серологической реакции осадочного типа. В ней используют растворимые микробные антигены, сорбированные на эритроцитах как носителях (антигенный диагностикум), или сорбированные на эритроцитах антитела известной иммунной сыворотки (антительный диагностикум). Антигенные диагностикумы применяют для серологичечкой диагностики, антительные – для обнаружения антигенов в исследуемом материале. РНГА на стекле применяют для диагностики пуллороза – тифа птиц (качественная кровекапельная реакция непрямой гемагглютинации), при положительной реакции выпадает в течение двух минут в смеси крови с антигеном хлопья коричневого осадка. Пробирочная РНГА рекомендована для серологической диагностики многих инфекционных болезней (сальмонеллезы, лептоспироз, трихомоноз и др.).

РА на стекле.

При этом варианте РА испытуемыми могут быть как сыворотка, так и антиген, но чаще всего этот вариант используют для идентификации микроорганизмов.

1. Для идентификации микроорганзма (м/о) на обезжиренное предметное стекло наносят раздельно каплю известной агглютинирующей сыворотки, например сальмонелиозной, и каплю физиологического раствора (контроль). Затем бактериологической петлей берут бактериальную массу изучаемой культуры из колонии в чашке Петри или с поверхности скошенного МПА в пробирке и суспендируют раздельно в иммунной сыворотке и физиологическом растворе до получения гомогенной взвеси. Результат учитывают через 2…4 мин.

Учет результатов: в контрольной пробе изменения должны отсутствовать. При специфическом соответствии культуры бактерий иммунной сыворотке появляются хлопья агглютината (положительный результат), в случае отсутствия феномена агглютинации делают заключение о том, что исследуемая культура бактерий не соответствует иммунной сыворотке.

2. Обнаружение аниттел в исследуемой сыворотке крови рассмотрим на примере роз-бенгал пробы, применяемой при серодиагностике бруцеллеза. На предметное стекло наносят 0,3 мл исследуемой сыворотки крови животного и 0,03 мл бруцеллезного антигена (окрашенные розовым-бенгальским клетки бруцелл). Компоненты тщательно перемешивают покачиванием стекла и через 4 мин учитывают результат.

Учет результатов: при положительной реакции появляются розовые хлопья агглютината. Серологическую реакцию подобного типа относят к качественной, так как с ее помощью можно выявлять антитела к возбудителю в сыворотке крови животного, но невозможно оценить их количественное содержание.

РТГА

Одной из простейших серологических реакции является реакция торможения гемаглютинации. Она основана на том, что АТ при встрече с гомологичным АГ нейтрализуют не только его инфекционную, но и гемагглютинирующую активность, т.к. блокируют рецепторы вирионов, ответственные за гемагглютинацию, образуя с ними комплекс «АГ+АТ». Принцип РТГА состоит в том, что в пробирке смешивают равные объемы сыворотки крови и суспензии вируса и после экспозиции определяют, сохранился ли в смеси вирус, путем добавления суспензии эритроцитов. Агглютинация эритроцитов указывает на наличие, а отсутствие гемагглютинации – на отсутствие вируса в смеси. Исчезновение вируса из смеси вирус + сыворотка расценивается как признак взаимодействия АТ сыворотки и вируса. РТГА позволяет решать следующие задачи: определять титр АТ к гемагглютинирующему вирусу в сыворотке; идентифицировать неизвестный гемагглютинирующий вирус по известным сывороткам; установить степень АГ родства двух вирусов. Достоинства РТГА: простота техники, быстрота, не требуется стерильной работы, специфичность, дешевизна. Недостаток РТГА: возможна только с гемагглютинирующими вирусами.

Принцип титрования АТ в РТГА состоит в следующем:

готовят ряд последовательных (обычно 2-х кратных) разведений исследуемой сыворотки в одинаковых объемах (чаще по 0,25 или 0,2 мл);

к каждому разведению добавляют такие же объемы гомологичного вируса в титре 4 ГАЕ;

смеси выдерживают определенное время при определенной температуре, ко всем смесям добавляют равные объемы 1-% суспензии отмытых эритроцитов;

после экспозиции оценивают гемагглютинацию в каждой смеси в крестах.

  1. Реакция преципитации и ее варианты.

РПГ

— метод выявления антигенов и антител, основанный на диффузии компонентов через слой агарового (агарозного) геля и образования видимого преципитата на участках, где создаются их эквивалентные концентрации.

Чаще всего используется метод двойной (встречной) диффузии, предложенный О. Ухтерлони в 1948 г., при котором антигены и сыворотки вносятся в противостоящие лунки, вырезанные в пластинке геля; через определенное время в толще геля образуются преципитационные полосы, соответственно числу антигенов и антител совпадающей специфичности. Кроме того, метод позволяет проводить сравнение нескольких антигенов между собой при некой стандартной сыворотке: в случае их идентичности образуемые ими полосы преципитации сливаются в сплошную линию и, наоборот, полосы пересекаются, если сравниваемые антигены имеют различия (т. н. феномен “шпоры”). Другим преимуществом РПГ является то, что смеси антигенов могут разделяться за счет разной скорости диффузии и выявляться индивидуально; по этой же причине могут отделяться и ингибиторы преципитации, если они содержатся в испытуемом материале. Недостатком метода считают его низкую чувствительность, иначе, разрешающую способность. РПГ широко использовалась как тест на обнаружение антигенов вируса гепатита В и антител к ним в 60 — 70-е годы, в частности, с помощью этой реакции было установлено наличие в составе вируса е-антигена или HBeAg.

Реакция преципитации характеризуется осаждением специфических мелкодисперсных антигенов эквивалентным количеством антител в присутствии электролита. Выпадение нерастворимого комплекса антиген — антитело в виде осадка наблюдается лишь при эквивалентных соотношениях ингредиентов. Образовавшийся комплекс может раствориться в избытке антигена или антител. Антиген должен иметь характер прозрачного коллоидного раствора.

В лабораторной диагностике инфекционных заболеваний реакция преципитации служит главным образом для выявления или идентификации антигена (преципитиногена) по известной преципитирующей сыворотке, содержащей антитела (преципитины). Для приготовления коллоидных антигенов, участвующих в реакции преципитации, используют различные методы их экстракции из исследуемого материала: физические, химические и биологические.

Реакция преципитации. Проводится с прозрачными коллоидными растворимыми антигенами, экстрагированными из патологического материала, объектов внешней среды и чистых культур бактерий. Один из распространенных методов химической экстракции антигенов бактерий — получение комплексного антигена по Буавену с помощью гидролиза бактерий трихлоруксусной кислотой. В реакции используются прозрачные диагностические преципитирующие сыворотки с высокими титрами антител. За титр преципитирующей сыворотки принимают то наибольшее разведение антигена, которое при взаимодействии с иммунной сывороткой вызывает образование видимого преципитата — помутнения.

Реакция кольцепреципитации. Ставится в узких пробирках (диаметр 0,5 см), в которые вносят по 0,2-0,3 мл преципитирующей сыворотки. Затем пастеровской пипеткой медленно, по стенке, держа пробирку в наклонном положении, наслаивают 0,1-0,2 мл раствора антигена. Пробирки осторожно переводят в вертикальное положение. Результаты опыта протоколируют .

Учет реакции производят через 1—2 мин. В случае положительной реакции в первой пробирке на границе между сывороткой и исследуемым антигеном появляется преципитат в виде белого кольца. В остальных (контрольных) пробирках преципитат не образуется.

Реакция преципитации в геле (агаре). Чашки заливают агаром, в котором вырезают несколько луночек на равном расстоянии друг от друга. В центральную лунку вносят сыворотку, содержащую антитела, в остальные — различные испытуемые антигены или один и тот же антиген в различных разведениях. При диффузии реагентов в агаре в зонах оптимальных соотношений на месте встречи антигена и антител образуются мутные полосы —дуги преципитации.

В случае постановки реакции преципитации с различными разведениями антигена можно установить титр преципитиру-ющей сыворотки—максимальное разведение антигена, которое дает преципитацию с данной сывороткой. Одна из разновидностей реакции преципитации в геле позволяет определять токсигенность исследуемых бактерий (например, дифтерийной палочки) с помощью антитоксической сыворотки. Для этого в чашку Петри на питательную среду помещают полоску стерильной фильтровальной бумаги, пропитанную антитоксической противодифтерийной сывороткой. Затем чашку подсушивают в термостате и засевают испытуемыми культурами в виде штрихов, перпендикулярных к полоске бумаги, на расстоянии 0,6-0,8 см от ее края. В качестве контроля используют заведомо токсигенную культуру. Чашки инкубируют при 37°С в течение суток. При наличии токсигенной культуры в месте взаимодействия токсина с антитоксином образуются линии преципитации в виде дуг.

Иммуноэлектрофорез. Исследование проводится в два этапа: 1) электрофоретическое разделение исследуемого материала в агаре; 2) иммунологический анализ. В агаре параллельно оси миграции электрофоретических фракций вырезают траншеи, в которые вносят иммунную сыворотку, содержащую антитела к исследуемым антигенам. В случае реакции между антигенами и диффундирующими в агар антителами формируется преципитат в виде дискретных дуг, соответствующих индивидуальным системам антиген—антитело

Иммунофлюоресцентный метод. На предметном стекле готовят мазок из испражнений больного ко-лиэнтеритом, фиксируют на пламени и обрабатывают иммунной сывороткой, содержащей антитела к возбудителям колиэнтерита. Для образования комплекса антиген — антитело препарат помещают во влажную камеру и инкубируют при 37°С в течение 15 мин, после чего тщательно промывают изотоническим раствором хлорида натрия — удаляют несвязавшиеся с антигеном антитела. Затем на препарат наносят флюоресцирующую антиглобулиновую сыворотку, выдерживают в течение 15 мин при 37°С и препарат тщательно промывают изотоническим раствором хлорида натрия. В результате связывания флюоресцирующей антиглобулиновой сыворотки с фиксированными на антигене специфическими антителами образуются светящиеся комплексы антиген — антитело, которые обнаруживаются при люминесцентной микроскопии.

  1. Реакции лизиса (бактериолиза и гемолиза).

Для постановки реакции лизиса и реакции связывания комплемента (РСК) используют комплемент, который содержится в сыворотке крови морских свинок. Гемолитическая активность комплемента термолабильна и полностью утрачивается при прогревании сыворотки в течение 30 мин при 56°С. При адсорбции комплемента на комплексе антиген — антитело его действие проявляется в реакции лизиса антигена, если это клетки, или не сопровождается никакими видимыми изменениями, если это мелкодисперсные или растворимые антигены. Для учета результатов данной реакции РСК вводят вспомогательную (индикаторную) гемолитическую систему. Она состоит из взвеси эритроцитов барана в изотоническом растворе хлорида натрия и гемолитической сыворотки кролика, полученной путем его иммунизации упомянутыми эритроцитами. Положительная РСК характеризуется задержкой гемолиза вследствие адсорбции комплемента системой антиген — антитело (рис. 60). Отрицательная РСК характеризуется наличием гемолиза, поскольку свободный комплемент связывается с системой эритроциты барана — гемолитическая сыворотка кролика. РСК обладает высокой чувствительностью й специфичностью, что позволяет использовать ее для серодиагностики многих заболеваний, а также для выявления антигенов в крови больного. Кроме того, ее применяют для идентификации бактерий, вирусов и других антигенов.

  1. Реакция связывания комплемента.

Реакция связ-ния комплемента

Сущность РСК в том, что если в сыворотке, полученной от больного животного, есть АТ, то они со специфическими АГ могут образовать комплекс, связывая комплемент, и гемолиза не будет, реакя «+»

Компоненты:

1. Сыворотки – исследуемая, позитивная и нормальная – в разведении 1:5 или 1:10, инактивные.

2. Антиген в разведении согласно титру.

3. Гемолизин (гемолитическая сыворотка).

4. Комплемент.

5. Эритроциты барана.

6. Физиологический раствор.

Этапы постановки РСК:

1.разведение и титрование гемолизина

2.титрование комплемента в гем. и бакт. системе.

3.проведение основной реакции.

Главный опыт РСК

Комплимент+сыворотка больного+антиген

+

Гемолизин+эритроциты барана= гемолиза нет, реакция «+», животное больное

Оценка реакции

++++ полное осаждение, нет гемолиза

+++ жидкость над осадком желтовата

+ резко выражен гемолиз – реакция «-»

Стандартная схема постановки РСК предусматривает проведение первой фазы —соединение антигена, испытуемой сыворотки и комплемента при 37°С в течение 30 мин. При постановке РСК на холоду эту фазу проводят при 0—4°С в течение 18—20 ч, что повышает чувствительность реакции.

Стандартная схема постановки РСК предусматривает проведение первой фазы —соединение антигена, испытуемой сыворотки и комплемента при 37°С в течение 30 мин. При постановке РСК на холоду эту фазу проводят при 0—4°С в течение 18—20 ч, что повышает чувствительность реакции.

После добавления в каждую пробирку по 0,4 мл гемолитической системы пробирки встряхивают и выдерживают 20—30 мин при 37°С. Результаты опыта оценивают, отмечая наличие или отсутствие гемолиза во всех пробирках (см. табл. 19): реакцию считают положительной при полной задержке гемолиза, когда жвдкость в пробирке бесцветна и эритроциты оседают на дно, отрицательной—при полном лизисе эритроцитов, когда жидкость интенсивно окрашена («лаковая кровь»). Степень задержки гемолиза оценивают в зависимости от интенсивности окраски жидкости и величины осадка эритроцитов на дне.

  1. Практическое приложение учения об иммунитете (серодиагностика, серотерапия, вакцино- профилактика).

Серодиагностика (от лат. serum — сыворотка и диагностика), метод распознавания заболеваний человека, животных и растений, основанный на способности антител сыворотки крови специфически реагировать с соответствующими антигенами. В медицине применяется для диагностики, в том числе экспресс-методами (иммунолюминесценция), инфекционных и некоторых неинфекционных заболеваний. К С. относятся также определение антигенов в биологических жидкостях (крови, моче и т. п.) и тканях при помощи реакций связывания комплемента, торможения пассивной гемагглютинации и т. п., определение вида бактерий и вирусов, выделенных от больных, и установление видовой принадлежности белков и групп крови человека при помощи специфических сывороток. Особая разновидность С. — диагностика заболеваний путём регистрации характерных изменений сыворотки крови при воздействии на нее определенными неспецифическими реактивами (например, осадочные реакции с липидами при сифилисе, желатинизация сыворотки под воздействием формальдегида при лейшманиозе и т. п.). См. также Серология, Иммунодиагностика.

В ветеринарии С. применяется для массовой диагностики инфекционных болезней животных. Позволяет диагностировать болезнь до появления клинических признаков. В зависимости от исследуемого материала и предполагаемого заболевания применяют реакции агглютинации, преципитации, связывания комплемента и др.; часто комбинируют с аллергическими реакциями.

Серотерапия (от лат. serum — сыворотка и терапия), метод лечения заболеваний человека и животных (преимущественно инфекционных) при помощи иммунных сывороток. Лечебный эффект основан на явлении пассивного иммунитета — обезвреживании микробов (токсинов) антителами (антитоксинами), содержащимися в сыворотках, которые получают путём гипериммунизации животных (главным образом лошадей). Для С. применяют также очищенные и концентрированные сыворотки — гамма-глобулины; гетерогенные (полученные из сывороток иммунизированных животных) и гомологичные (полученные из сывороток иммунизированных или переболевших людей). Сыворотки иммунные применяют при лечении дифтерии (преимущественно в начальной стадии болезни), ботулизма, при укусах ядовитых змей; гамма-глобулины — при лечении гриппа, сибирской язвы, столбняка, оспы, клещевого энцефалита, лептоспироза, стафилококковых инфекций (особенно вызванных антибиотикоустойчивыми формами микробов) и других заболеваний. Для предупреждения осложнений С. (анафилактический шок, сывороточная болезнь) сыворотки и гетерогенные гамма-глобулины вводят по специальной методике с предварительной кожной пробой. В ветеринарной практике иммунные сыворотки, в том числе гамма-глобулины, применяют при лечении сибирской язвы, геморрагической септицемии крупного рогатого скота, овец и свиней, анаэробной дизентерии ягнят, рожи свиней и т. п.

Вакцинопрофилактика

Эффект иммунологической памяти может быть достигнут при введении в организм т.н. ослабленных микробов, родственных микробов или их отдельных компонентов.

Вакцинами называются препараты, предназначенные для создания искусственного активного иммунитета. Некоторые вакцины применяют для лечения инфекционных заболеваний. Вакцины делят на живые и убитые, корпускулярные и химические. К вакцинным препаратам относятся также анатоксины.

Живые вакцины готовят из микроорганизмов, обладающих стойко сниженной вирулентностью, но сохранивших иммуногенные свойства. Убитые (температурой или действием химических веществ) корпускулярные вакцины содержат инактивированные микроорганизмы. Химические вакцины готовят из антигенов, экстрагированных из бактериальных клеток химическими методами. Анатоксины готовят из экзотоксинов, обезвреженных формалином.

Вакцины выпускают в жидком и сухом виде. Сухие вакцины состоят из микроорганизмов, высушенных методом лиофилизации.

В качестве вакцин используются антигены разного происхождения, это могут быть живые и убитые бактерии, вирусы, анатоксины, а также антигены, полученные с помощью генной инженерии и синтетические.

От состава вакцин во многом зависят их иммунобиологические свойства, способность индуцировать специфический иммунный ответ. Однако некоторые составные части вакцин могут вызвать и нежелательные реакции, что следует учитывать при проведении иммунизации.

Существующее многообразие вакцин можно подразделить на две основные группы: на живые и убитые (инактивированные) вакцины. В свою очередь какждая из этих групп может быть разделена на подгруппы

1. Живые вакцины - из аттенуированных штаммов возбудителя (штаммы с ослабленной патогенностью).

2. Убитые вакцины

- Молекулярные, полученные путем:

а) биологического синтеза;

б) химического синтеза.

- Корпускулярные:

а) из цельных микробов;

б) из субклеточных надмолекулярных структур.

В последние годы созданы синтетические молекулярные вакцины, а так же плазмидные (генные) вакцины.

Постановка вопроса о предпочтительном выборе либо живых, либо убитых вакцин нам кажется неоправданной, так как в каждом конкретном случае эти принципиально разные препараты имеют свои преимущества и свои недостатки.

Традиционные вакцины

а) инактивированные

Инактивированные вакцины получают путем воздействия на микроорганизмы химическим путем или нагреванием. Такие вакцины являются достаточно стабильными и безопасными, так как не могут вызвать реверсию вирулентности. Они часто не трубуют хранения на холоде, что удобно в практическом использовании. Однако у этих вакцин имеется и ряд недостатков, в частности, они стимулируют более слабый иммунный ответ и требуют применения нескольких доз (бустерные иммунизации).

б) живые аттенуированнные

Хотя живые вакцины требуют специальных условий хранения, они продуцируют достаточно эффективный клеточный и гуморальный иммунитет и обычно требуют лишь одно бустерное введение. Большинство живых вакцин вводится парентерально (за исключением полиомиелитной вакцины).

На фоне преимуществ живых вакцин имеется и одно предостережение, а именно: возможность реверсии вирулентных форм, что может стать причиной заболевания вакцинируемого. По этой причине живые вакцины должны быть тщательно протестированы. Пациенты с иммунодефицитами (получающие иммуносупрессивную терапию, при СПИДе и опухолях) не должны получать такие вакцины.

в) анатоксины

Многие микроорганизмы, вызывающие заболевания у человека, опасны тем, что выделяют экзотоксины, которые являются основными патогенетическими факторами заболевания (например, дифтерия, столбник). Анатоксины, используемые в качестве вакцин, индуцируют специфический иммунный ответ. Для получения вакцин токсины чаще всего обезвреживают с помощью формалина.

  1. Применение экспериментальных животных в микробиологии.

1. Используют:

1)для обнаружения вируса в ПМ

2)первичного выделения вируса из ПМ

3)накопления вирусной массы

4)поддержания вируса в лабе в активном сост.

5)титровании вируса

6)в качестве тест-объекта в РН

6)получение гипериммунных сывороток.

Использ. жив.: белые мыши, белые крысы, Мор. свинки Кролики

  1. Стафилококки. Морфология, культивирование свойства. Факторы патогенности. Патогенез. Микробиологическая диагностика. Иммунитет. Биопрепараты.

Патогенные стафилококки - вызывает гнойно-воспалительные процессы различной локализации: местные – фу-рункулы, абсцессы и др.; в отдельных органах – маститы, эндометриты и др.; общее поражение – пиемия и септицемия.

пищевые токсикозы (токсикоинфекции)

Классификация:

род: Staphylococcus

виды:

S.aureus - наиболее патогенный

S.epidermidis – наименее патогенный

S.saprophyticus – очень редко вызывает болезни.

Восприимчивы все виды животных, включая человека и птиц.

АГ : пептидогликан, тейхоевые к-ты, протеин A

Патогенез и факторы вирулентности:

проникает в организм через поврежденную кожу и слизистые оболочки;

энтеротоксины – с пищевыми продуктами (мясо, молоко и др.);

образуют и выделяют экзотоксины: гематоксин, лейкоцидин, энтеротоксин, некротоксин;

образуют и выделяют ферменты: коагулазу, фибринолизин, гиалуронидазу, ДНК-азу.

Методы диагностики

Бактериологический метод:

материал для исследования:

раневой экссудат, гной абсцессов, ран, молоко при маститах, выделение из половых органов при эндометритах, кровь при септицемии;

микроскопия:

методы окраски:

простой метод и по Граму;

микрокартина:

шаровидные клетки располагаются беспорядочно, диаметр 0,5-1,5 мкм;

грамположительные;

спор не образуют;

капсулу не образуют.

культивирование:

посев на питательные среды:

МПА, МПБ, МПА с 15% хлорида натрия, кровяной МПА.

особенности выделения чистой культуры:

факультативные анаэробы;

оптимальная температура 370C;

срок культивирования 18-20 часов.

культуральные свойства:

на МПА – колонии округлые, диаметром 2-5 мм, с ровным краем, могут быть окрашены в золотистый цвет (S.aureus), белый (S. epidermidis), лимонно-желтый (S.saprophyticus).

на жидких средах: на МПБ – равномерное помутнение с выпадением рыхлого хлопьевидного осадка.

биохимические свойства (ферментативная активность):

ферментация маннита без газа (в анаэробных условиях);

гемолиз на кровяных средах;

ДНК – азная активность;

Рост на элективных средах;

Плазмокоагуляция.

Биопроба для определения свойств:

летальных – на кроликах;

дерматонекротических – на кроликах;

токсических – на котятах

Серологическая и аллергическая диагностика:

в ветеринарии не используется

Антигенное строение; серотины; фаготипы

Патогенные и непатогенные стафилококки могут быть также дифференцированы с помощью реакции адсорбации. С помощью адсорбированных сывороток пиогенные стафилококки были разделены на 7 специфических типов и 8 типов с менее специфическими реакциями. Большое значение имеет метод фаготипажа стафилококков. С помощью специфических стафилококковых фагов стафилококки отнесены к различным фаготипам.

Метод фаготипирования позволяет выявить патогенность штаммов стафилококка. Для фагодиагностики стафилококков с помощью специфического фага, применяются фаги, принадлежащие к пяти группам. Основными фагами удается пикетировать до 60 % выделяемых бактерий, процент пикетируемых фагами стафилококков достигает 73,7 %.

По степени патогенности и токсичности стафилококки могут быть разделены на 3 группы:

стафилококки первой группы дают значительный гемолиз на 5 % кровяном агаре с кровью кролика и барана в течение 1 - 2 ч. Стафилококков этой группы выделяют при фурункулезе, гидраденитах, остеомиелитах, флегмонах, сепсисе и при ряде других гнойных заболеваниях. Стафилококки, принадлежащие к первой группе считаются патогенными;

стафилококки второй группы вызывают незначительный гемолиз на 5 % кровяном агаре с кровью кролика и барана. Они считаются условно патогенными. Они встречаются часто на открытых поверхностях кожи, при фолликулитах, иногда на поверхности ран;

стафилококки третьей группы не вызывают гемолиза на 5 % кровяном агаре с кровью кролика или барана. Эти стафилококки следует считать сапрофитами, их часто выделяют с поверхности здоровой кожи, а также с различных предметов.

Для выделения стафилококков производят посев на чашку Петри с молочно-солевым агаром. Одновременно засевают чашки с 5 % кровяным агаром с кровью кролика или барана. Через 18 - 20 ч инкубации при 37 °С выросшие на чашках колонии микроскопируют, делают мазок и окрашивают по Граму. Колонии стафилококков затем пересевают на пробирки с питательной средой и помещают в термостат при 37 °С. Через 12 - 18 ч роста после микроскопирования мазков из выросшей культуры, окрашенных по Граму, ставят реакцию плазмокоагуляции, а из оставшейся культуры готовят взвесь и вводят кролику внутрикожно. Реакцию учитывают через 24 - 48 ч (появление некроза).

  1. Стрептококки. Морфология, культивирование, ферментативные свойства. Антигенная структура. Патогенез. Микробиологическая диагностика.

Патогенные стрептококки – возбудители гнойно-воспалительных процессов различной локализации (мыт лошадей, маститы у животных, стрептококковая септицемия птиц, кроликов, стрептококковый полиартрит), а также смешанных и вторичных инфекций (абсцесс, фурункул, нефрит, пиемия, сепсис и др.).

Фекальные стрептококки могут вызвать воспаление кишечника и мочеполовых путей.

Пищевые токсикозы (токсикоинфекции).

Классификация возбудителей:

Сем. Streptococcaceae

Род. Streptococсus, включает 17 серологических групп

Виды.

Str.pyogenes (гнойно-воспалительный процессые)

Str. Ebui (мыт у лошадей)

Str. Agalactiiae (мастит)

Str. Disgaiactiae (стрептококковый полиартрит ягнят)

Str. Sooepidemicus (стрептококковая септицемия птиц)

Патогенез и факторы вирулентности:

многие патогенные стрептококки относятся к нормальной микрофлоре кожи и слизистых оболочек и проявляют свою патогенность при снижении общей резистентности;

образуют экзотоксины – гемолизин, лейкоцидин, летальный некротоксин;

продуцируют ферменты – гиалуронидаза, фибринолизин, ДНК-азу, РНК-азу, нейрамидазу и др;

образуют термостабильные эндотоксины.

Методы диагностики

Бактериологический метод:

материал для исследования:

при жизни – гной, молоко, кровь, кал;

посмертно – пораженные органы.

микроскопия:

методы окраски:

простой метод по Граму;

микрокартина:

шаровидные клетки до 1 мкм, располагающиеся в короткие и длинные цепочки;

грамположительные;

спор не образуют;

капсулу не образуют;

неподвижны.

культивирование:

посев на питательные среды:

МПА и МПБ, с сывороткой крови, с сахаром, с кровью;

особенности выделения возбудителя:

факультативные анаэробы;

оптимальная температура 37oС;

срок культивирования 18-20 часов;

культуральные свойства:

на плотных средах – мелкие, прозрачные с ровным краем колонии;

на жидких средах – незначительное помутнение, крошковидный осадок.

биохимические свойства:

ферментируют углеводы – глюкозу, сахарозу и др. (без газа);

не обладает протеолитическими свойствами;

на кровяном МПА вызывают гемолиз.

биопроба:

заражают подкожно белых мышей, кроликов.

Серологические методы:

применяют реакцию преципитации для типизации выделенных культур.

орфология стрептококков- это неподвижные шаровидные или овальные кокки диаметром 0,8-1 мкм, образующие цепочки различной длины и положительно окрашиваются по Граму. Часть штаммов образует капсулу. Длина цепочек связана с условиями выращивания. В жидкой питательной среде они длиннее, на плотных средах нередко расположены в виде коротких цепей и пучков. Кокки перед делением могут быть овоидными. Деление происходит перпендикулярно по отношению к цепи. Каждый кокк делится на 2.

Биология стрептококков: культуральные свойства. На агаре с кровью стрептококк образует мелкие (1-2 мм в диаметре) полупрозрачные палочки, сероватые или бесцветные, которые хорошо снимаются петлей. Величина зоны гемолиза варьирует у разных штаммов: группа А образует зону гемолиза несколько превышающую диаметр колонии, группа B дают большую зону гемолиза. Стрептококки типа А образуют зеленоватую или зеленовато-коричневую зону гемолиза, мутноватую или прозрачную, варьирующую по величине и интенсивности окраски. В некоторых случая сама колония приобретает зеленоватое окрашивание. В жидких питательных средах для стрептококков характерен придонный часто поднимающийся по стенкам рост. При взбалтывании зернистая или хлопьевидная взвесь. Общепринятые среды для выращивания: мясопептонный агар с добавлением крови кролика или барана, полужидкий агар с сывороткой.

Хороший рост и токсинообразование могут быть обеспечены на "комбинированном бульоне" или на средах, содержащих казеиновый гидролизат и дрожжевой экстракт. Гемолитические стрептококки метаболизируют глюкозу с образованием молочной и других кислот, что является фактором, лимитирующим рост микробов в питательной среде. Устойчивость к физическим химическим факторам.

Гемолитические стрептококки группы А в течении длительного времени могут сохраняться на предметах, в пыли в высушенном состоянии. Однако эти культуры, сохраняя жизнеспособность, утрачивают вирулентность.

Стрептококк группы А высокочувствителен к пенициллину, который оказывает на него бактерицидное действие. Сульфаниламид действует на стрептококк А бактериостатически.

Для бактериологического исследования материал, собранный тампоном со слизистой зева и носа, засевают на чашку Петри с кровяным агаром, ставят в термостат на 3-4 ч при 37°С. При наличии стрептококков через сутки на агаре вырастают характерные палочки. Для микроскопического исследования изолированную колонию пересевают в жидкую питательную среду (мясопептонный бульон с сывороткой) и через 24 ч выращивания в термостате подвергают исследованию. Мазки окрашивают по Граму или метиленовым синим по Леффлеру. Затем изучают биохимические свойства культур и определяют тип стрептококка с помощью реакции агглютинации на стекле и реакции преципитации с типовыми сыворотками. Из серологических реакций применяют реакцию связывания комплемента (РСК) с сывороткой иммунизированного кролика.

  1. Возбудитель мастита. Морфология, культивирование, биохимические свойства, факторы патогенности. Патогенез. Микробиологическая диагностика. Иммунитет. Биопрепараты.

Мастит- Str. Agalactiae

В лабораторию – молоко, гной из абсцессов, гнойные выделения из пораженных частей вымени.

Гр +, сп —, кп —, двж—.

Мелкий кок, цепи до 100 шт, извитые.

Аэроб

кров. МПА -  -выявление скрытой гемолитич акт-ти

МПБ, МПА с глюкозой

Биохим ;

желатина –

молоко –

лактоза +

глюкозу, лактозу, сахарозу, мальтозу, салицин до к-ты, камп-метод на кровяном агаре с β-гемолитическим стафилакокком, рядом доп. Гемолиз стрептококка. Среда Гиса с цветным рядом.

Биопроба – морск свинку внутрибрюшинно 0,3-0,5мл, гибель через 24-48 часов.

Препп:Мастицит, мастит-форте, синтомициновая и ихтиоловая мази, мазь Вишневского, бактериофаги.

Имм: Непрод, слаб, нестерильный

Факт пат: гемолизин, лейкоцидин, летальный, некротоксин, ферменты, тстаб эндотокс

Леч: А/б, с/а

  1. Возбудитель мыта Морфология, культивирование, биохимические свойства. Восприимчи­ вость сельскохозяйственных животных. Патогенез. Микробиологическая диагностика. Им­ мунитет. Биопрепараты.

Мыт лошадей (Adenitis equorum) — остро протекающая болезнь жеребят, реже лошадей (если они ранее не болели мытом); изредка наблюдают заболевания ослов и мулов.

6 мес - 5 лет цельнокопытные

кошки, мыши

Возбудитель (Str. equi) серогруппы С окрашивается всеми анилиновыми красками, грамположителен, спор не образует, неподвижен. В мазках из гноя (из абсцессов).лимфатических узлов больных животных заметны в виде длинных и коротких цепочек, состоящих из десятков кокков. В мазках из носового истечения мытный стрептококк может быть в ассоциации с другими микробами.

Лучше всего возбудитель растет на сыворотке крови лошади, в сывороточном и сахарном бульонах. На МПА растет в виде мельчайших слизистых капелек росы, но затем они становятся серо-белыми, непрозрачными. На кровяном агаре отмечают гемолиз. На МПБ (через 24 ч при 37°С) на дне колбы образуются в обильном количестве нежные, беловатые, пушистые хлопья, тогда как бульон остается прозрачным. В бульонных культурах мытного стрептококка обнаруживают гематоксин, лейкотоксин, токсин общего действия и агрессины.

Наиболее чувствительны к мытному стрептококку белые мыши, однако погибают и котята; кролики и морские свинки — менее чувствительны.

В навозе, соломе, сене, в волосах лошадей возбудитель сохраняется до 30 дн., на глинобитном полу — до 9 мес, в сухом гное — до года. Солнечные лучи убивают мытного стрептококка через 6—8 дн., кипячение — моментально. В растворах креолина (3%-ные), карболовой кислоты (5%-ные), сулемы (1 ; 1000) возбудитель мыта погибает за 10—15 мин.

Эпизоотологические данные. К заболеванию мытом предрасполагают недостаточное содержание витаминов и минеральных веществ в рационе, холодная погода, сквозняки в помещениях, большая скученность животных. Основные пути заражения — алиментарный или воздушно-капельный (контактирование больных со здоровыми, а также контаминированные возбудителем кормушки, пастбища, предметы ухода за животными и др.).

Клинические признаки. Инкубационный период — 5—18 дн., иногда сокращается до 1—2 дн. клинически мыт проявляется в типичной, абортивной и осложненной формах. Для первой характерны повышение температуры тела до 40—41°С, угнетенное состояние, потеря аппетита, катар слизистой оболочки носа, из которого сначала вытекает прозрачный, а затем слизисто-гнойный экссудат. Отмечается воспаление глотки, миндалин, подчелюстных лимфатических узлов. Последние самопроизвольно вскрываются, температура снижается, иногда раны заживают. Болезнь продолжается 15—25 дн.

Для абортивной формы мыта характерны нередко выраженные клинические признаки: температура тела 39—39,5°С, незначительное увеличение подчелюстных лимфатических узлов, не всегда отмечают гнойное их воспаление, регистрируют незначительное истечение слизисто-гнойного экссудата из носовой полости. Очень быстро болезнь заканчивается выздоровлением.

Для осложненной метастатической (тяжелой) формы мыта характерно образование абсцессов в околоушных, плечевых, коленных, иногда и в лимфатических узлах грудной и брюшной полостей. Отмечают также гнойное воспаление суставов. Возможны гнойный плеврит и перитонит. Течение может быть длительным и с летальным исходом.

Патологоанатомические изменения. Из носовых отверстий выделяется гной, подчелюстные и заглоточные лимфатические узлы увеличены, слизистая оболочка глотки гиперемирована, в бронхиальных, мезентериальных лимфатических узлах обнаруживают гнойные очаги размером с грецкий орех и больше, а в лимфатических узлах брюшной полости — величиной с голову человека. Гнойные очаги могут быть и в легких, печени, почках, в головном и спинном мозге. В грудной полости содержится несколько литров серозно-фибринозной жидкости.

Диагноз и дифференциальный диагноз основаны на анализе эпизоотологических, клинических и бактериологических данных. В лабораторию направляют гной из невскрывшихся абсцессов. Длинные извитые цепочки стрептококков в мазках свидетельствуют о заболевании мытом. Данную болезнь необходимо дифференцировать от сапа и гриппа лошадей, ринита и фарингита неинфекционного происхождения.

Иммунитет. После переболевания мытом у лошадей создается стойкий пожизненный иммунитет.

Профилактика и меры борьбы. При возникновении в хозяйстве мыта больных животных немедленно изолируют в теплое, светлое, хорошо вентилируемое помещение без сквозняков. В теплое время года лучше содержать больных индивидуально на открытом воздухе. При затрудненном глотании корм следует давать в виде болтушки из отрубей или муки.

Леч: пенициллины, окситетрациклин

Био: «Антивирус» - 20 сут. бульон. культ.

Микр: Грам, Ром

Факт пат: фибринолизин, гиалуронидаза