Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛР 11_Метрология_экспертиза МВИ.doc
Скачиваний:
1
Добавлен:
24.11.2019
Размер:
294.4 Кб
Скачать

Показатели точности измерений: допускаемая и (или) приписанная неопределенность измерений или норма погрешности или приписанная характеристика погрешности измерений

Любое измеренное значение физической величины является неопределённым, иначе содержащим случайную, или систематическую, или ту и другую составляющие погрешности результата измерений.

В свою очередь, систематическая составляющая погрешности складывается из методической, инструментальной и субъективной составляющих.

Методические составляющие обусловлены неадекватностью выбранной модели объекта измерений его свойствам, отклонением от номинальных значений параметров функции, связывающей измеряемую величину с величиной на входе средства измерений, квантованием по уровню (при использовании средств измерений с аналого-цифровым преобразованием), вычислительными алгоритмами.

Инструментальные составляющие обусловлены основной погрешностью средства измерений, дополнительными погрешностями средства измерений, вариацией (гистерезисом) средства измерений, взаимодействием средства измерений с объектом измерений, динамическими составляющими, обусловленными инерционностью средства измерений, и связанные с отбором и приготовлением проб веществ.

Составляющие, обусловленные действиями оператора (субъективные составляющие) связаны с неточностью отсчетов результатов измерений со шкалы или диаграммы средства измерений, с воздействием оператора на объект и средства измерений (искажения температурного поля, механические воздействия и т.п.).

Согласно РМГ 29-99 погрешность результата измерения это отклонение результата измерения от истинного (действительного) значения измеряемой величины. Примечания: Истинное значение величины неизвестно, его применяют только в теоретических исследованиях. На практике используют принятое опорное значение величины, хпоз

Погрешность измерения ∆xизм определяют по формуле:

Δхизм, = хизмпоз,

где ∆xизм-измеренное значение величины.

Согласно «ГОСТ Р ИСО 5725-1-2002 Точность (правильность и прецизионность) методов и результатов измерений. Часть 1. Основные положения и определения»:

принятое опорное значение - значение, которое служит в качестве согласованного для сравнения и получено как:

а) теоретическое или установленное значение, базирующееся на научных принципах;

b) приписанное или аттестованное значение, базирующееся на экспериментальных работах какой-либо национальной или международной организации;

с) согласованное или аттестованное значение, базирующееся на совместных экспериментальных работах под руководством научной или инженерной группы;

d) математическое ожидание измеряемой характеристики, то есть среднее значение заданной совокупности результатов измерений – лишь в случае, когда а), b) и с) недоступны.

точность степень близости результата измерений к принятому опорному значению.

В «МИ 1317-2004 Рекомендация. Государственная система обеспечения единства измерений. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров», установлены следующие группы характеристик погрешности измерений:

Задаваемые в качестве требуемых или допускаемых - нормы характеристик погрешности измерений (нормы погрешности измерений).

Приписываемые любому результату измерений из совокупности результатов измерений, выполняемых по одной и той же аттестованной методики выполнения измерений - приписанные характеристики погрешности измерений.

Отражающие близость отдельного, экспериментально полученного результата измерений к истинному значению измеряемой величины статистические оценки характеристик погрешности измерений (статистические оценки погрешности измерений).

При массовых технических измерениях, выполняемых при технологической подготовке производства, в процессах разработки, испытаний, производства, контроля и эксплуатации (потребления) продукции, при товарообмене, торговле и др., преимущественно применяют нормы погрешности измерений, а также приписанные характеристики погрешности измерений Они представляют собой вероятностные характеристики (характеристики генеральной совокупности) случайной величины - погрешности измерений.

При измерениях, выполняемых при проведении научных исследований и метрологических работ (определение физических констант, свойств и состава стандартных образцов, индивидуальном исследовании средств измерений и т. п.), преимущественно применяют статистические оценки погрешности измерений. Они представляют собой статистические (выборочные) характеристики случайной величины - погрешности измерений.

Приписанные характеристики погрешности измерений в методиках задаются в виде доверительных границ погрешности результата измерений - наибольшего и наименьшего значения погрешности измерений, ограничивающие интервал, внутри которого с заданной вероятностью находится искомое (истинное) значение погрешности результата измерений. Например, в методике указано, что границы допустимой относительной погрешности, в пределах которых погрешность измерений находится с доверительной вероятностью 0.95, составляют ±25 %.

Физические величины. Единицы измерения физических величин. Международная система единиц физических величин (СИ). Основные и производные единицы физических величин СИ Внесистемные единицы Кратные и дольные единицы физических величин

Величина (измеримая) – характерный признак (атрибут) явления, тела или вещества, которое может выделяться качественно и определяться количественно.

Согласно РМГ 29-99:

физическая величина Одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

единица измерения физической величины – физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных с ней физических величин.

В соответствии с «ГОСТ 8.417-2002 ГСИ. Единицы величин» все измеряемые величины можно классифицировать как системные и внесистемные, основные и дополнительные, кратные и дольные, размерные и безразмерные.

Согласно РМГ 29-99:

Основные единицы Международной системы единиц (СИ): метр (м), килограмм (кг), секунда (с), ампер (А), кельвин (К), моль (моль) и кандела (кд)

внесистемная единица физической величины - единица физической величины, не входящая в принятую систему единиц.

Примечание. Внесистемные единицы (по отношению к единицам СИ) разделяются на четыре группы:

1 - допускаемые наравне с единицами СИ;

2 - допускаемые к применению в специальных областях;

3 - временно допускаемые;

4 - устаревшие (недопускаемые).

кратная единица физической величины единица физической величины, в целое число раз большая системной или внесистемной единицы.

Пример – единица длины 1 км = 103 м, т.е. кратная метру; единица частоты 1 МГц (мегагерц) = 106 Гц, кратная герцу; единица активности радионуклидов 1 МБк (мегабеккерель) = 106 Бк, кратная беккерелю.

дольная единица физической величины единица физической величины, в целое число раз меньшая системной или внесистемной единицы.

Пример – единица длины 1 нм (нанометр) = 10-9 м, единица времени 1 мкс = 1·10-6 с являются дольными соответственно от метра и секунды.

Основной единицей измерения количества частиц компонента (n) в Международной системе единиц физических величин (система СИ), принятой к применению в СССР в 1984 году, является 1 моль. 1 моль любого компонента, представляющий для нас интерес в виде электрона, протона, элемента (атома), изотопа, функциональной группы, в том числе иона, или молекулы, содержит 6,0221023 таких структурных единиц в каком-либо объёме или массе вещества. Тысячная часть 1 моль (дольная единица) обозначается ммоль (читается миллимоль).

Содержание компонента в пробах твердого вещества выражают через массовую долю компонента, м.д., г/т, %; в пробах газообразного вещества – через объёмную долю газообразного компонента, об.%; в пробах жидкого и газообразного вещества – через концентрацию компонента.

Концентрация компонента всегда является именованной величиной, она имеет смысл для конкретного компонента А. Это нашло отражение и в определении концентрации, в котором подчеркивается, что речь идет об относительном содержании данного компонента в объёме многокомпонентного жидкого или газообразного вещества.

В системе СИ основные наименования концентрации компонентов в объёме жидкого или газообразного вещества – это молярная концентрация компонента, моль/м3, и массовая концентрация компонента, кг/м3 [ГОСТ 8.417-2002 ГСИ. Единицы величин].