Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
зачет расш.doc
Скачиваний:
7
Добавлен:
23.11.2019
Размер:
205.82 Кб
Скачать

2.Чувствительные узлы: строение, морфофункциональная хар-ка нейронов и нейроглии. Внутримозговая пересадка чувствительных узлов.

Нервный узел - это скопление нервных клеток вне центральной нервной системы. Нервные узлы могут быть чувствительными и вегетативными. Они окружены с поверхности соединительнотканной капсулой, от которой отходят внутрь узла прослойки. Нейроны узла могут быть псевдоуниполярными (спинномозговой узел) и мультиполярными (вегетативные нервные узлы). Нейроны, образующие спинномозговой узел, располагаются группами на его периферии. В вегетативных узлах нейроны располагаются диффузно. Кроме нейронов в узле находятся также нервные волокна и глиоциты. Симпатические нервные узлы (нервные ганглии) лежат обычно за пределами органа, а парасимпатические - в стенке органа (интрамурально). Нейроны спинномозговых узлов чувствительные, а вегетативных - эфферентные. Нервные клетки спинномозговых узлов окружены слоем клеток глии, которые здесь называются мантийными глиоцитами, или глиоцитами ганглия. Они расположены вокруг тела нейрона и имеют округлые ядра. Снаружи глиальная оболочка тела нейрона покрыта тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки отличаются овальной формой ядер.

Внутримозговая пересадка чувствительных узлов.Следует особо отметить внутримозговую трансплантацию ганглиев периферической нервной системы. Внутримозговая аллотрансплантация спинальных ганглиев новорожденным крысятам с применением иммунодепрессантов, обеспечивает переживание нейронов этих ганглиев на протяжении 12 недель. При трансплантации спинальных ганглиев в большое полушарие молодых крыс от крыс такого же возраста через 5 недель после трансплантации нейроны трансплантата имеют нормальную униполярную форму и обычные размеры. Более развитыми являются трансплантаты, располагающиеся в перивентрикулярной области. При внутри мозговой трансплантации спинальных ганглиев взрослым крысам выявлен рост аксонов переживших: нейронов. Изучение аллотрансплантации фрагмента верхнего шейного узла от новорожденных и трехмесячных крыс линии Спрог-Доли на дорсальную поверхность спинного мозга и аналогичной аутотрансплантации показало существование зависимости результатов трансплантации от возраста донора. Трансплантаты от неонатальных животных подвергаются дегенераuии, а трансплантаты от 2-З-недельных и 3-месячных доноров переживают и устанавливают связи с мозгом реципиента. При этом наблюдается: 1)прорастание сосудов мозга реципиента в ганглии, 2)миграция нейронов реципиента в ткань ганглия, 3)притягивание трансплантированным ганглием тел и отростков астроцитов реципиента. Таким образом, при трансплантации спинальных ганглиев имеет место ангиотропное, нсйротропное, глиотропное действие, совокупность которых значительно изменяет структурно-функциональное состояние мозга реципиента.

3. Спинной мозг: строение, морфофункциональная характеристика нейро-нов и нейроглии, травмы, приживление и дифференцировка мотонейронов в нейротрансплантатах.

Серое вещество состоит из расположенных группами мультиполярных нейронов, нейроглиоцитов, безмиелиновых и тонких миелиновых волокон. Скопления нейронов, имеющих общую морфологию и функцию, называются ядрами. Серое вещество на срезе имеет форму бабочки. Белое вещество не содержит тел нейронов и состоит преимущественно из миелиновых волокон, составляющих восходящие и нисходящие пути спинного мозга.

Функционально нейроны спинного мозга можно разделить на 4 основные группы:1)мотонейроны, или двигательные – клетки передних рогов, аксоны которых образуют передние корешки;2)интернейроны – нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприорецептивные раздражения;3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;4)ассоциативные клетки – нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами. В средней зоне серого вещества спинного мозга имеется промежуточное ядро (ядро Кахаля) с клетками, аксоны которых идут вверх или вниз на 1-2 сегмента и дают коллатерали на нейроны, образуя сеть (студенистое в-во в заднем роге). Ф-ия ретик. формации. Мотонейроны: α-мотонейроны образуют прямые связи с чувствительными путями, идущими от экстрафузальных волокон мышечного веретена, имеют до 20000 синапсов на своих дендритах и характеризуются низкой частотой импульсации (10-20 в секунду).γ-мотонейроны, иннервирующие интрафузальные мышечные волокна мышечного веретена, получают информацию о его состоянии через промежуточные нейроны. Эти нейроны обладают высокой частотой импульсации (до 200 в секунду). Среди нейронов спинного мозга можно выделить три вида клеток: корешковые, внутренние и пучковые. Аксоны корешковых клеток покидают спинной мозг в составе его передних корешков. Отростки внутренних клеток заканчиваются синапсами в пределах серого вещества спинного мозга. Аксоны пучковых клеток проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Нейроны ядер передних рогов содержат двигательные нейроны. Задние рога богаты диффузно расположенными вставочными клетками. Это мелкие мультиполярные ассоциативные и комиссуральные клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же стороны (ассоциативные клетки) или противоположной стороны (комиссуральные клетки). Тяжелая травма позвоночника ведет к глубокой инвалидизации пострадавших. В начальный период, от момента травмы до ~ 24 часов, вслед за механическим, первичным повреждением ткани спинного мозга, уже через несколько минут начинается этап вторичного метаболического повреждения. Здесь играют роль механизмы и ишемического повреждения вследствие нарушения спинального кровообращения, тромбоза, спазма и нарушения проницаемости капилляров вокруг очага первичной травмы, с последующим вазогенным и позднее цитотоксическим отеком ткани мозга. Зона повреждения и гибели вещества мозга расширяется за счет высвобождающихся протеолитических ферментов, поступления ионов Са2+ в нейроны и глиальные клетки, активации ПОЛ и таких процессов, как гидролитическое расщепление белково-липидных структур. Высвобождение простаноидов, метаболитов арахидоновой кислоты — лейкотриенов, тромбоксана, простагландинов, а также нейтрофильная инфильтрация, сопровождающаяся выбросом в ткань миелопероксидазы и эластазы, расширяют ареал повреждения с формированием в соседних с первичной травмой участках спинного мозга новых очагов некроза в его строме и паренхиме.

Позднее (более 24-х часов до 7-ми суток) зона травматического некроза, заполненная детритом, очищается макрофагами и нейтрофилами, а также за счет развития гиперплазии микроглиоцитов, астроцитов, появления дренажных форм олигодендроцитов, новообразования сосудов. Выше и ниже места травмы продолжается хроматолиз и гибель отдельных нейронов за счет апоптоза. На некоторых нервных волокнах появляются колбы роста. Завершающий этап продолжается до трех месяцев и более, когда происходит окончательная организация дефекта путем формирования глиального рубца, за счет гиперплазии микроглии и астроцитов, с частым формированием посттравматической кисты. В этот период морфологические исследования продолжают манифестировать разрастание аксонов на несколько миллиметров в сторону или вглубь рубца с конусов роста на концах. На этом этапе формируется кортикальная дезорганизация мотонейронов коры больших полушарий. Завершается рубцовая организация бывших очагов некроза, происходит окончательное формирование кист в зоне повреждения.

При трансплантации ткани эмбрионального спинного мозга в спинной мозг молодых и взрослых животных наблюдается: • приживление и дифференцировка мотонейронов эмбрионального спинного мозга в белом и сером веществе спинного мозга взрослых животных, • миграция трансплантированных нейронов на расстояние до 4-6 мм, • способность иннервировать мышечную ткань отростками через мостик из периферического нерва, • замещение недостающих нейронов вентральных рогов, • проникновение аксонов, происходящих из трансплантата, в мозг реципиента на расстояние до 5 мм, • миелинизация волокон спинного мозга при трансплантации участков эмбрионального спинного мозга в спинной мозг молодых мышей с дефицитом миелина.