Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3_УП_Линейная алгебра_2007.DOC
Скачиваний:
35
Добавлен:
23.11.2019
Размер:
2.59 Mб
Скачать

6.3. Собственный вектор и собственное число линейного оператора

Пусть в пространстве задан линейный оператор .

Определение. Ненулевой вектор , удовлетворяющий соотношению , называется собственным вектором, а соответствующее число – собственным значением оператора .

Из данного определения следует, что образом собственного вектора является коллинеарный ему вектор .

Отметим некоторые свойства собственных векторов оператора .

1. Каждому собственному вектору соответствует единственное собственное число. Предположим обратное: пусть собственному вектору оператора соответствуют два собственных числа . Это значит, что

,

.

Но отсюда следует, что

Так как по условию – ненулевой вектор, то .

2. Если и – собственные векторы оператора с одним и тем же собственным числом , то их сумма также является собственным вектором оператора с собственным числом . Действительно, так как и , то

.

3. Если – собственный вектор оператора с собственным числом , то любой вектор , коллинеарный вектору , также является собственным вектором оператора с тем же самым собственным числом .

Действительно,

.

Таким образом, каждому собственному числу соответствует бесчисленное множество коллинеарных собственных векторов. Из свойств 2 и 3 следует, что множество собственных векторов оператора , соответствующих одному и тому же собственному числу, образует пространство, которое является подпространством пространства .

Докажем теорему о существовании собственного вектора.

Теорема. В комплексном линейном пространстве каждый линейный оператор имеет, по крайней мере, один собственный вектор.

Доказательство. Пусть – линейный оператор, заданный в пространстве , а – собственный вектор этого оператора с собственным числом , т.е. . Выберем произвольный базис и обозначим координаты вектора в этом базисе через . Тогда, если – матрица оператора в базисе , то, записывая соотношение в матричной форме, получим

где .

(6.3.1)

В координатной форме матричное уравнение (6.3.1) имеет вид

(6.3.2)

Для отыскания собственного вектора необходимо найти ненулевые решения системы (6.3.2), которые существуют тогда и только тогда, когда определитель системы равен нулю, т.е. когда . Отсюда следует, что собственное число линейного оператора является его характеристическим числом, которое всегда существует. Подставляя это число в систему (6.3.2), найдет ненулевое решение этой системы, которое определяет искомый собственный вектор. Теорема доказана.

Из данной теоремы следует, что нахождение собственного числа линейного оператора и соответствующего ему собственного вектора сводится к решению характеристического уравнения . Пусть – различные корни характеристического уравнения. Подставив какой-нибудь корень в систему (6.3.2), найдем все ее линейно независимые решения, которые и определяют собственные векторы, соответствующие собственному числу . Если ранг матрицы равен r и r<n, то существует k=n-r линейно независимых собственных векторов, отвечающих корню.

Пример. Найти собственные векторы линейного оператора , заданного матрицей

.

Решение. Составим характеристическое уравнение

,

или откуда .

Подставляем корни в систему (6.3.1). Найдем собственные векторы оператора .

При имеем

.

Получим однородную систему трех линейных уравнений, из которых только одно (любое) является линейно независимым. Общее решение системы имеет вид . Найдем два линейно независимых решения:

.

Тогда собственные векторы, соответствующие собственным значениям , имеют вид

,

где с – произвольное действительное число, отличное от нуля.

При имеем

.

Общее решение данной системы имеет вид

Собственный вектор, соответствующий собственному значению , равен

.

Теорема. Пусть собственные значения оператора попарно различны. Тогда отвечающие им собственные векторы линейно независимы.

Доказательство. Используем метод индукции по числу переменных. Так как – ненулевой вектор, то при p=1 утверждение теоремы справедливо.

Пусть утверждение теоремы справедливо для m<p векторов . Присоединим к этим векторам вектор и допустим, что имеет место равенство

(6.3.3)

Используя свойство линейного оператора, получим

(6.3.4)

Так как , -собственные векторы, то и поэтому равенство (6.3.4) можно переписать следующим образом:

(6.3.5)

Умножим (6.3.3) на и вычтем из (6.3.5), получим

(6.3.6)

По условию все , различны, поэтому . Система векторов – линейно независимая. Поэтому из (6.3.6) следует, что . Тогда из (6.3.3) и из условия, что – собственный вектор ( ), получаем . Это означает, что – система линейно независимых векторов. Индукция проведена. Теорема доказана.

Следствие: если все собственные значения попарно различны, то отвечающие им собственные векторы образуют базис пространства .

Теорема. Если в качестве базиса пространства принять n линейно независимых собственных векторов, то оператору в этом базисе соответствует диагональная матрица

.

Доказательство. Рассмотрим произвольный вектор и базис, составленный из собственных векторов этого пространства. Тогда , где – координаты вектора в базисе .

Применяя к вектору оператор , получим или .

Так как , – собственный вектор, то .

Тогда

(6.3.7)

Из (6.3.7) имеем

,

,

…………

.

(6.3.8)

Равенства (6.3.8) означают, что матрица линейного оператора в базисе имеет вид

.

Теорема доказана.

Определение. Линейный оператор в пространстве Rn называется оператором простой структуры, если он имеет n линейно независимых собственных векторов.

Очевидно, что операторы простой структуры, и только они, имеют диагональные матрицы в некотором базисе. Этот базис может быть составлен лишь из собственных векторов оператора . Действие любого оператора простой структуры всегда сводится к «растяжению» координат вектора в данном базисе.