Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3_УП_Линейная алгебра_2007.DOC
Скачиваний:
35
Добавлен:
23.11.2019
Размер:
2.59 Mб
Скачать

4.2. Методы решения системы n линейных уравнений с n неизвестными

Рассмотрим систему n линейных уравнений с n неизвестными

(4.2.1)

Определитель |A| матрицы А называется определителем системы (4.2.1).

Теорема Крамера. Если определитель |A| системы (4.2.1) отличен от нуля, то система совместна и имеет единственное решение.

Доказательство. Пусть система (4.2.1) совместна и – одно из ее решений. Тогда получим n тождеств:

(4.2.2)

Умножим обе части первого из равенств (4.2.2) на алгебраическое дополнение , обе части второго равенства умножим на алгебраическое дополнение и т.д. и обе части n-ого равенства – на . Складывая левые и правые части полученных выражений, придем к следующему равенству:

(4.2.3)

Коэффициент при равен определителю |A| системы (4.2.1), коэффициент при равен нулю, а правая часть равенства (4.2.3) является определителем, полученным из определителя |A| путем замены j-го столбца столбцом свободных членов.

Обозначим данный определитель через

Тогда равенство (4.2.3) примет вид: , откуда

(4.2.4)

Из формулы (4.2.4) следует, что если система (4.2.1) совместна, то она обладает единственным решением.

Формулы (4.2.4) называются формулами Крамера.

Непосредственной подстановкой значений , во все уравнения системы убедимся в том, что они образуют ее решение:

.

При , при , .

Таким образом, получим

.

Теорема доказана.

Пример. Решить систему линейных уравнений методом Крамера:

Решение. Вычислим определитель :

,

,

,

откуда

Решение системы линейных уравнений с определителем |A|, отличным от нуля, можно найти с помощью обратной матрицы. Для этого запишем систему (4.2.1) в виде матричного уравнения

АХ=В

(4.2.5)

где .

Решение матричного уравнения (4.2.5) имеет вид

(4.2.6)

Пример. Решить систему линейных уравнений с помощью обратной матрицы

Решение. Вычислим для матрицы

ее обратную матрицу

.

Определим неизвестную матрицу-столбец Х:

,

откуда

Формулы Крамера (4.2.4) могут быть получены из выражения (4.2.6). Действительно, запишем матричное равенство в развернутом виде:

.

Из полученного выражения непосредственно следуют формулы Крамера:

.

4.3. Теорема Кронекера-Карелли

Теорема. Система линейных уравнений (4.1.1) совместна тогда и только тогда, когда .

Доказательство.

Необходимость. Пусть система (4.1.1) совместна и пусть числа – одно из ее решений. Подставляя эти числа вместо неизвестных в систему (4.1.1), получим m тождеств, которые показывают, что последний столбец матрицы является линейной комбинацией всех остальных столбцов, взятых соответственно с коэффициентами . Всякий другой столбец матрицы входит и в матрицу А. Поэтому максимальное число линейно независимых столбцов матриц А и совпадает. Следовательно, .

Достаточность. Пусть дано, что . Отсюда следует, что максимальное число линейно независимых столбцов матриц А и совпадает и равно r. Для определенности предположим, что первые r столбцов матриц А и линейно независимы, а остальные (n-r) столбцов является их линейными комбинациями. Выражая последний столбец матрицы А как линейную комбинацию первых r столбцов, получим:

откуда следует, что числа являются решением системы (4.1.1), т.е. система (4.1.1) совместна. Теорема доказана.

На основании теоремы Кронекера-Капелли имеем:

  1. Если , то система (4.1.1) несовместна;

  2. Если , то система (4.1.1) совместна.

Пусть для определенности базисный минор порядка r расположен в верхнем левом углу матрицы А. Тогда первые r строк матрицы А линейно независимы, а остальные ее строки являются линейной комбинацией первых r строк. Но это означает, что первые r уравнений системы (4.1.1) линейно независимы, а остальные (m-r) ее уравнений являются их линейными комбинациями. Поэтому достаточно решить систему r уравнений; решения такой системы будут, очевидно, удовлетворять и остальным (m-r) уравнениям.

При этом возможны два случая:

  1. . Тогда систему, состоящую из первых r уравнений системы (4.1.1)

можно решить, например, по правилу Крамера. В этом случае система имеет единственное решение, т.е. система совместна и определена;

  1. . Рассмотрим первые r уравнений системы (4.1.1). Оставив в левых частях первые r неизвестных, перенесем остальные в правые части. Получим систему:

Очевидно, что полученная система и, следовательно, система (4.1.1) являются совместными и неопределенными.

Таким образом, если , то система (4.1.1) совместна (определенная или неопределенная), если , то система (4.1.1) несовместна.

Если в системе n линейных уравнений с n неизвестными определитель системы равен нулю, то . Тогда если , то система является совместной и неопределенной. Если , то система несовместна.

Теорема Кронекера-Капелли устанавливает необходимое и достаточное условие совместности системы (4.1.1), но не дает способа нахождения решения этой системы. Рассмотрим метод Жордана-Гаусса – метод решения системы m линейных уравнений с n неизвестными.