Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Версия 3!!!.docx
Скачиваний:
17
Добавлен:
23.09.2019
Размер:
500.6 Кб
Скачать
  1. Дифракция Френеля на круглом отверстии, на сплошном диске. Пятно Пуассена. Радиус зоны Френеля.

1 . Дифракция на круглом отверстии. Сферическая волна, распространяющаяся из точечного источника S, встречает на своем пути экран с круглым отверстием. Дифракционную картину наблюдаем на экране Э в точке В, лежащей на линии, соединяющей S с центром отверстия (рис. 259).

Экран параллелен плоскости отверстия и находится от него на расстоянии b. Разобьем открытую часть волновой поверхности Ф на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами

где знак плюс соответствует нечетным m и минус - четным m.

Число зон Френеля, открываемых отверстием, зависит от его диаметра.

2 . Дифракция на диске. Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем иа экране Э в точке В, лежащей на линии, соединяющей S с центром диска (рис. 260).

В данном случае закрытый диском участок волнового фронта надо исключить из рассмотрения и зоны Френеля строить начиная с краев диска. Пусть диск закрывает т первых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна

или

так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля.

Пятно Пуассона - светлое пятно в центре геометрической тени от непрозрачного объекта. Оно обусловлено загибанием света в область геометрической тени. Дифракция на дисках различного диаметра приводит к появлению в центре геометрической тени максимума - т.н. пятна Пуассона. Диаметр и яркость пятна увеличиваются при уменьшении диаметра диска.

Зоны Френеля, участки, на которые разбивают волновую поверхность при рассмотрении дифракции волн (Гюйгенса—Френеля принцип)

Радиус зоны Френеля: , если положить, что , то для радиуса центральной зоны. . Радиусы остальных зон возрастают как .

  1. Дифракция Фраунгофера на одной щели, на двух щелях. Ширина дифракционного максимума.

Рассмотрим экран с двумя щелями, на которые нормально падает плоская монохроматическая волна. Расчеты показывают, что интенсивность света за экраном будет зависеть от угла  φ между направлением распространения света и перпендикуляром к экрану :

 

где I0 - интенсивность света в центре дифракционной картины, когда открыта только одна щель, b - ширина щели, d - расстояние между щелями. Первый сомножитель в квадратных скобках описывает дифракцию Фраунгофера на одной щели, а второй сомножитель - интерференцию от двух точечных источников.

Приведённый ниже рисунок показывает зависимость интенсивности света от угла φ в случае дифракции на одной щели.

Количественный критерий дифракции Фраунгофера описывается формулой:

z >> d2/

где z - расстояние от экрана с щелями до точки наблюдения. В непосредственной близости к щелям дифракционная картина будет описываться формулами Френеля.

Дифракция Фраунгофера от бесконечно длинной щели (для этого практически достаточно, чтобы длина щели была значительно больше ее ширины).

где F- основание перпендикуляра

Из этого выражения вытекает, что число зон Френеля, укладывающихся на ширине щели, зависит от угла j. От числа зон Френеля, в свою очередь, зависит результат наложения всех вторичных волн. Если число зон Френеля четное, то

(179.2)

И это дифракционный минимум (полная темнота), если же число зон Френеля нечетное, то

(179.3)

и наблюдается дифракционный максимум, соответствующий действию одной нескомпенсированной зоны Френеля.

Положение дифракционных максимумов зависит от длины волны. При освещении щели белым светом центральный максимум наблюдается в виде белой полоски; он общий для всех длин волн (при j = 0 разность хода равна нулю для всех l). Боковые максимумы радужно окрашены, так как условие максимума при любых m различно для разных l. Таким образом, справа и слева от центрального максимума наблюдаются максимумы первого (m = 1), второго (m = 2) и других порядков, обращенные фиолетовым краем к центру дифракционной картины. Однако они настолько расплывчаты, что отчетливого разделения различных длин волн с помощью дифракции на одной щели получить невозможно.