Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Версия 3!!!.docx
Скачиваний:
17
Добавлен:
23.09.2019
Размер:
500.6 Кб
Скачать
  1. Бета-распад. Бета-активность.

Бе́та-распа́д — тип радиоактивного распада, обусловленного слабым взаимодействием и изменяющего заряд ядра на единицу. При этом ядро может излучать бета-частицу (электрон или позитрон). В случае испускания электрона он называется «бета-минус» (β ), а в случае испускания позитрона — «бета-плюс-распадом» (β + ). Кроме β и β + -распадов, к бета-распадам относят также электронный захват, когда ядро захватывает атомный электрон. Во всех типах бета-распада ядро излучает электронное нейтрино+ -распад, электронный захват) или антинейтрино (β -распад).

При b--распаде число протонов (Z) в ядре увеличивается на единицу, а число нейтронов уменьшается на единицу. Массовое число ядра А, равное общему числу нуклонов в ядре, не меняется, и ядропродукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов. Наоборот, при b+-распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра

  1. Термоядерные реакции. Термоядерный синтез.

Реакции синтеза легких атомных ядер в более тяжелые, происходящие при сверх­высоких температурах (примерно 107 К и выше), называются термоядерными реак­циями.

Термоядерные реакции являются, по-видимому, одним из источников энергии Солнца и звезд. В принципе высказаны два предположения о возможных способах протекания термоядерных реакций на Солнце:

1) протонно-протонный, или водородный, цикл, характерный для температур (приме­рно 107 К):

2) углеродно-азотный, или углеродный, цикл, характерный для более высоких температур (примерно 2107 К):

В результате этого цикла четыре протона превращаются в ядро гелия и выделяется энергия, равная 26,7 МэВ. Ядра же углерода, число которых остается неизменным, участвуют в реакции в роли катализатора.

Управляемый термоядерный синтез открывает человечеству доступ к неисчерпаемой «кладо­вой» ядерной энергии, заключенной в легких элементах. Наиболее заманчивой в этом смысле является возможность извлечения энергии из дейтерия, содержащегося в обычной воде. В самом деле, количество дейтерия в океанской воде составляет примерно 41013 т, чему соответствует энергетический запас 1017 МВтгод. Другими словами, эти ресурсы не ограничены

  1. Взаимодействие фотонного излучения с веществом.

Фотонное излучение (оно же гамма оно же рентгеновское оно же тормозное оно же характеристическое). На самом деле это названия одного итого же излучения - фотонного, только при разных энергиях фотона и полученное разными способами.

При прохождении рентгеновских лучей через какое-нибудь твердое, жидкое или газообразное вещество они взаимодействуют с электронами, при очень большой жесткости и ядрами атомов элементов, входящих в состав вещества и при этом теряют часть своей энергии вследствие: 1) истинного поглощения, т.е. превращения их энергии в другие виды энергии; 2) рассеяния, т.е. изменения направления распространения лучей без изменения длины и с изменением длины волны. Первичными элементарными процессами истинного поглощения рентгеновского излучения, т.е. преобразования их энергии в кинетическую энергию электронов являются: а) фотоэлектрический эффект — вырывание электронов из атомов поглощающего вещества и сообщение им кинетической энергии (фотоэлектрическое поглощение); б) комптон-эффект — когерентное и некогерентное рассеяние, т.е. с изменением длины волны и передачей части энергии рассеивающему электрону; в) образование элементарных пар зарядов — электрона и позитрона — и сообщение им кинетической энергии.