Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по мат анализу.docx
Скачиваний:
72
Добавлен:
14.09.2019
Размер:
1.12 Mб
Скачать

1.5 Интегрирование по мере

ПОВТОРНЫЙ ИНТЕГРАЛ

интеграл, в к-ром последовательно выполняется интегрирование по разным переменным, т. е. интеграл вида 

 (1)

Функция f(x, y).определена на множестве А, лежащем в прямом произведении XX Y пространств Xи У, в к-рых заданы s-конечные меры mx и my, обладающие свойством полноты; множество   ("сечение" множества А), измеримое относительно меры m х;. множество А у (проекция множества Ав пространство Y), измеримое относительно меры m у. Интегрирование по (у).производится по мере (mx, а по А у - по мере my. Интеграл (1) обозначают также 

К П. и. могут быть сведены кратные интегралы. Пусть функция f(x, у), интегрируемая по мере   на множестве  , продолжена нулем на все пространство  , тогда П. и.

и 

существуют и равны между собой:

 (2)

(см. Фубини теорема). В левом интеграле внешнее интегрирование фактически производится по множеству  . Таким образом, в частности, для точек   множества (у).измеримы относительно меры m х. По всему множеству А у брать этот интеграл, вообще говоря, нельзя, т. к. при измеримом относительно меры m множества Амножество А у может оказаться неизмеримым относительно меры my, так же, как и отдельные множества (у), , могут быть неизмеримы относительно меры m х.

Множество же   всегда измеримо относительно меры my, если только множество Аизмеримо относительно меры m.

Сформулированные условия возможности перемены порядка интегрирования в П. и. являются лишь достаточными, но не необходимыми: иногда перемена порядка интегрирования в П. и. допустима, а соответствующий кратный интеграл не существует.

Напр., для функции   при x2+y2>0 и f(0, 0) = 0 П. и.

а кратный интеграл 

не существует. Однако если существует хотя бы один из интегралов 

 или 

то функция f интегрируема на множестве   и справедливо равенство (2).

Для П. и. в случае, когда внутренний интеграл является интегралом Стилтьеса, а внешний - интегралом Лебега, справедлива следующая теорема о перемене порядка интегрирования: пусть функция g(x, у). суммируема по уна [с, d]для всех значений хиз [ а, b]и является функцией ограниченной вариации по хна [ а, b]для почти всех значений  . Пусть, далее, полная вариация функции g(x, у).но переменной хна [a, b]при всех указанных значениях уне превышает нек-рой неотрицательной и суммируемой на [с, d] функции. Тогда функция   является функцией ограниченной вариации от переменной хна [а, b]и для любой непрерывной на [а, b]функции f(х).имеет место формула 

2Вопросы по теме « интегралы одной переменной»

2.1 Определение неопределенного интеграла

Дадим строгое математическое определение понятия неопределенного интеграла.

Выражение вида   называется интегралом от функции f(x), где f(x) - подынтегральная функция, которая задается (известная), dx - дифференциал x, с символом  всегда присутствует dx.

Определение. Неопределенным интегралом  называется функция F(x) + C, содержащая произвольное постоянное C, дифференциал которой равенподынтегральному выражению f(x)dx, т.е.  или  Функцию   называют первообразной функции   . Первообразная функции   определяется с точностью до постоянной величины.

Напомним, что   -дифференциал функции   и определяется следующим образом:

Задача нахождения неопределенного интеграла заключается в нахождении такой функции,производная которой равняется подынтегральному выражению. Данная функция определяется с точностью до постоянной, т.к. производная от постоянной равняется нулю.

Например, известно, что   , тогда получается, что   , здесь   - произвольная постоянная.

Задача нахождение неопределенного интеграла от функций не столь простая и легкая, как кажется на первый взгляд. Во многих случаях должен быть навык работы снеопределенными интегралами, должен быть опыт, который приходит с практикой и с постоянным решением примеров на неопределенные интегралы. Стоит учитывать тот факт, что неопределенные интегралы от некоторых функций (их достаточно много) не берутся в элементарных функциях.