Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kakie_ustroystva_personalnogo_kompyutera_nazyv.doc
Скачиваний:
6
Добавлен:
21.11.2019
Размер:
435.2 Кб
Скачать
  1. Чем отличаются процессоры sx, dx, sx2, dx2 и dx4? [4, 128-172]

SX и DX обозначает "облегченную" и полную веpсию одного и того же пpоцессоpа. Для 386 ваpиант SX был сделан с 16-pазpядным интеpфейсом, что позволяло экономить на обвязке и устанавливать память по два SIMM, а не по четыpе, как для DX. Пpи pаботе с 16-pазpядными пpогpаммами 386SX почти не отстает от 386DX на той же частоте, однако на 32-pазpядных пpогpаммах он pаботает ощутимо медленнее из-за pазделения каждого 32-pазpядного запpоса к памяти на два 16-pазpядных. Hа самом же деле большинство компьютеpов с 386DX pаботают быстpее компьютеpов с SX даже на 16-pазpядных пpогpаммах — благодаpя тому, что на платах с 386DX чаще всего установлен аппаpатный кэш, котоpого нет на большинстве плат с SX. Внутpенняя аpхитектуpа 386SX — полностью 32-pазpядная, и пpогpаммно обнаpужить pазницу между SX и DX без запpоса кода пpоцессоpа, измеpения скоpости pаботы магистpали или pазмеpа буфеpа пpедвыбоpки в общем случае невозможно.

Для 486 SX обозначает ваpиант без встpоенного сопpоцессоpа. Ранние модели пpедставляли собой пpосто отбpаковку от DX с неиспpавным сопpоцессоpом — сопpоцессоp в них был заблокиpован, и для установки такого пpоцессоpа вместо DX тpебовалось пеpенастpоить системную плату. Более поздние веpсии выпускались самостоятельно, и могут устанавливаться вместо DX без изменения настpойки платы. Кpоме отсутствия сопpоцессоpа и идентификационных кодов, модели SX также ничем не отличаются от соответствующих моделей DX, и пpогpаммное pазличение их в общем случае тоже невозможно.

SX2, DX2 и DX4 — ваpианты соответствующих пpоцессоpов с внутpенним удвоением или утpоением частоты. Hапpимеp, аппаpатная настpойка платы для DX2-66 делается, как для DX33, и на вход подается частота 33 МГц, однако в пpогpаммной настpойке может потpебоваться увеличение задеpжек пpи обpащении к памяти для компенсации возpосшей скоpости pаботы пpоцессоpа. Все внутpенние опеpации в пpоцессоpах выполняются соответственно в два и тpи pаза быстpее, однако обмен по внешней магистpали опpеделяется внешней тактовой частотой. За счет этого DX4-100 pаботает втpое быстpее DX33 только на тех участках пpогpамм, котоpые целиком помещаются в его внутpенний кэш, на больших фpагментах это отношение может упасть до двух с половиной и меньше.

Hекотоpые сеpии пpоцессоpов AMD (в частности — 25253) выпускались с единым кpисталлом DX4, котоpый мог пеpеключаться в pежим удвоения по низкому уpовню на выводе B-13. Маpкиpовка как DX2 или DX4 пpоводилась по pезультатам тестов; соответственно, пpоцессоp, маpкиpованный как DX4, мог pаботать как DX2 и наобоpот. Пpоцессоpы Intel DX4-100 могут пеpеключаться в pежим удвоения по низкому уpовню на выводе R-17.

Пpоцессоp AMD 5x86 стандаpтно pаботает с утpоением внешней частоты, а низкий уpовень на выводе R-17 пеpеключает его в pежим учетвеpения.

  1. Что такое разгон процессора и как он делается?

ЧТО ТАКОЕ РАЗГОН Разгон это повышение штатной частоты работы микросхем до предельных значений. Любая микросхема имеет некоторый порог после которого она уже не сможет работать. Процессоры при изготовлении как правило маркируют в 70% от максимально возможной частоты, хотя случаются и исключения: Так Celeron 300A в большинстве случаев свободно работает на частоте 450 МГц Семейство прорцессоров Celeron наиболее пригодно для разгона т.к. его ядро работает на одной частоте с кешем второго уровня.  ВИДЫ РАЗГОНА Есть два вида разгона: 1 Увеличение коэффициента умножения частоты системной шины. 2 Увеличение самой частоты сис. шины. Разгон различных компонент компьютера в последнее время стал совершенно обычным и массовым явлением. Для кого-то это новый вид спорта или просто развлечение. Многие энтузиасты этого дела прибегают к таким ухищрениям, какие нормальному человеку покажутся слегка странноватыми. Например, на оверклокерских сайтах можно увидеть радостную реплику вроде: "Вчера мне удалось разогнать свой Celeron до XXX (или даже XXXX) мегагерц, и замерить производительность в Quake, пока мой помощник обдавал процессор снегом из углекислотного огнетушителя !" =). Ниже пойдет речь о том, как проконтролировать разгон, для того чтобы иметь у себя на столе стабильно работающую систему, при которой все комплектующие работают в безопасном для себя и окружающих режиме.  Разгоняя процессор, оперативную память и видеоплату мы получаем довольно значимую прибавку в производительности совершенно безвозмездно, то есть даром. Но теория с бесплатным сыром остается вполне применима и к данному случаю. Получая дополнительные FPS мы платим потерей стабильности и уменьшением срока жизни чипа. Но просим не забывать, что срок службы чипа примерно 115 лет. Поэтому, не страшно даже если он в 10 раз меньше проработает после разгона т.к. он морально устареет уже через 2 - 3 года...Говоря простым языком, при увеличении тактовой частоты происходит усиленное рассеивание мощности с элементов схемы следствием чего является термогенрация носителей заряда в полупроводнике, дрейф статических и динамических характеристик структур, изменение пороговых напряжений, а так же усиление процессов электромиграции в токоведущих дорожках из-за увеличения плотности тока. =) Если говорить короче, то чип начинает "глючить" и в особо жестких условиях теоретически может сгореть. Что касается температуры, то ее повышение на 10 градусов вдвое сокращает жизнь микросхемы. О мерах охлаждения читайте тут: читать Предположим, вы разогнали систему. Как проверить, что компьютер работает стабильно? Нужно в течение некоторого времени максимально загрузить работой все его подсистемы. Самый часто даваемый совет на этот счет заключается в запуске игрушки вроде Quake и некоторому времени прогона demo в этой игре. В большинстве случаев это позволяет выявить явные неполадки. Но! Этот метод не позволяет быть уверенным даже на 85%. Сейчас я объясню почему.  Допустим, чтобы прогнать тест вы поставили максимальное разрешение и качество изображения. Если это не супер-быстрая карта, то узким местом в системе становится видеоплата. И пока она визуализирует сцену и выводит очередной кадр процессор простаивает! То есть нельзя сказать, что он загружен на 100%. А если он не полностью загружен, то где гарантия что система не "упадет" при предельной загрузке.  Другой момент, пусть у вас 128 Мб оперативной памяти, которая работает на повышенной частоте и теоретически может сбоить. Если сбойная ячейка находится в области данных или ядра операционной системы, то программа или операционная система вызовут сбой или зависание системы. А если она находится на месте где сейчас храниться текстура? Вряд ли вы сможете заметить пиксел немного отличающегося цвета, да еще на текстуре отфильтрованной видеоплатой.  У всех современных процессоров заблокирован множитель. Разогнать такой процессор можно только путем повышения частоты системной шины. А когда мы повышаем частоту шины, мы почти всегда повышаем частоту работы оперативной памяти и частоту шины AGP на которой работает видеоплата. Разумеется, что работа свыше номинальных частот может теоретически вызвать проблемы. Поэтому, если вы хотите быть на 100% уверены что ваша система "solid as a rock" то есть абсолютно стабильна, необходимо протестировать каждую подсистему отдельно.  Итак, перейдем от слов непосредственно к делу.  Процессор Нормальный отвод тепла от чипа - залог стабильности. Поэтому прежде чем разгонять процессор убедитесь, что он имеет качественный радиатор и вентилятор. Качественный радиатор будет иметь наибольшую площадь поверхности (множество ребер), а качественный вентилятор имеет в свой основе шарикоподшипник. Для получения хорошего контакта процессор-радиатор необходимо очистить обе соприкасаемые поверхности и нанести тонкий слой термопасты. В 90 процентах случаев, когда разогнанная система запускается, но через некоторое время начинает сбоить и виснет, или сбоит при выполнении приложений, сильно загружающих процессор, причину следует искать именно в перегреве процессора.  Теперь, когда все готово, начинаем плавно увеличивать частоту шины (FSB). После установки очередного значения возможны следующие варианты:  1. "Черный экран" при включении системы – означает, что либо процессор, либо видеокарта не способный работать на данной частоте. Значение системной шины придется вернуть назад. Если они задаются переключателями на плате, то это не составит никаких проблем. Если установка частоты задается при помощи BIOS, то при включении компьютера необходимо удерживать нажатой клавишу Ins на клавиатуре (в различных платах метод может отличаться). При этом последующая загрузка будет произведена на стандартной частоте.  2. Компьютер зависает при начальной загрузке, когда проходит POST (Power On Self Test). В этом случае, возможно, что процессор или какие-либо устройства не могут стабильно работать на данной частоте шины. Можно попытаться стабилизировать работу путем поднятия напряжения питания процессора на 0.1 – 0.2 B предварительно обеспечив ему достаточное охлаждение. В новых материнских платах предусмотрено также поднятие напряжения на PCI и AGP шинах. В любом случае этим способом нужно пользоваться с особой осторожностью, так как именно с поднятием напряжений могут возникнуть основные серьезные необратимые проблемы.  3. После загрузки OC или при работе периодически вылетает "синий экран" или сообщение о том, что программа выполнила недопустимую операцию. В данном случае, скорее всего, виновато недостаточное охлаждение процессора, и при обеспечении хорошего теплоотвода проблемы в большинстве случаев исчезают.  4. Компьютер запускается и работает без видимых проблем. Необходимо проверить надежность работы в критических условиях и брать следующий барьер частоты. Для загрузки процессора и проверки работоспособности в критических условиях существует масса различных приложений. В том числе и специально написанных для решения данной проблемы. Я же в свою очередь, могу порекомендовать CPU Stability Test (446 Kb). Данная утилита выполняет огромное количество всевозможных тестов для разных блоков CPU. После выполнения теста проверяется CRC результата и выносится вердикт.  Если данная программа проработала ночь, и при этом не разу не было ошибок в результатах вычислений, то с большой долей вероятности можно судить, что процессор стабилен.  При разгоне процессора всегда нужно следить за достаточным теплоотводом. Датчики, расположенные на плате в силу многих факторов, не всегда показывают истинный результат. Для большей надежности лучше использовать универсальный датчик температуры, давления и прикосновения, расположенный у вас на руке. Если вы не можете спокойно держать палец на радиаторе, то пока подумать о дополнительном охлаждении. Разумеется, делать измерения нужно ОЧЕНЬ осторожно и аккуратно.  Оперативная память Оперативная память не в меньшей степени влияет на производительность и стабильность системы чем центральный процессор. При разгоне современных процессоров мы почти всегда разгоняем оперативную память поднимая частоту шины. Если говорить о разгоне Celeron, рассчитанных на частоту системной шины 66 Мгц, то при использовании стандартной сейчас РС 100 памяти проблем не возникает, так как есть хороший запас на поднятие частоты. Если же у вас Pentium II/III или Athlon с не разблокированным множителем, то оперативная память вполне может стать препятствием при разгоне так как далеко не вся производимая сегодня память способна работать на частотах значительно превышающих номинальные.  А каким образом можно быть уверенным, что память работает стабильно? Метод с запускам игр, и их прогону в течении некоторого времени, как было отмечено выше, не является точным. У меня не раз были ситуации при которых весьма сложно было вычислить - кто виноват процессор и память, если сбой происходил один-два раза в день.  Обычные тестовые программы для проверки памяти работают ужасно медленно, написаны давным-давно, и в принципе неспособны показать реальную картину. Память даже не успевает как следует разогреться. Кроме того, программы работающие под Windows вообще не в состоянии протестировать большую часть памяти которая занята ядром ОС и прочими делами.  В общем, единственный реально работающий тест который можно рекомендовать для проверки, это небольшая программка с тривиальным названием testmem. Автор - С.Маштаков. Имея размер ровно 9 Кб эта вещица проходит по всей доступной памяти кроме первого мегабайта работая при этом в реальном режиме. 9 Кб позволяют программе разместиться в кэше первого уровня, и работать с оперативной памятью на максимально возможной скорости, а многократно повторяющиеся операции считывания, дают возможность судить о высокой степени обнаруживаемости ошибки.  Разумеется программа работает только в "чистом" ДОСе. Для запуска необходимо использовать пункт "Safe Mode with Command Prompt" при начальной загрузке или создать загрузочную дискету (только с основными системными файлами) с помощью команды format a: /s, затем переписав туда и testmem. При запуске без параметров программа прогоняет стандартный тест, который включает в себя 50 циклов проверки при двух операциях чтения. Данный режим позволяет быстро оценить стабильность. Для более точной оценки необходимо запустить программу с ключом -s, где производятся 200 циклов проверки при пяти операциях чтения.  Таким образом мы разобрались с оперативной памятью. Теперь подошла очередь для самой главной для игрока части системы - видеоплаты.  Видеоплата. При разгоне современной видеоплаты существует возможность отдельно указывать частоты работы ядра и видеопамяти. При увеличении частоты ядра в большей степени увеличивается производительность карты в 16 битном цвете, когда объем прокачки текстур невелик. При 32 битном цвете, больше сказывается частота работы видеопамяти, когда через нее надо прогнать большие объемы текстур.  На успех разгона в первую очередь влияет хорошее охлаждение. Даже если плата имеет вентилятор, это еще совсем не значит что теплоотвод идеален. Часто этот вентилятор маломощный и создает слабый воздушный поток который обдувает весьма низкопрофильный радиатор. Делается это для того, чтобы в соседний PCI слот могла вместится плат расширения. Если у вас соседний с видеоплатой слот пустует, вы можете поэкспериментировать и создать нечто наподобие этого:  К сожалению, у меня нет цифрового фотоаппарата и для иллюстраций использованы фотографии из Интернет.  Помимо охлаждения чипа, стоит подумать и об охлаждении видеопамяти, которая может также довольно сильно нагреваться и при этом сбоить. В простейшем случае это просто обдув за счет вентилятора на чипе, в более продвинутом, установка с помощью теромпасты маленьких радиаторов на чипы видеопамяти.  Как и в случае с процессором, при разгоне видеоплаты возможны различные ситуации при увеличении частоты.  Для ядра:  1) Мгновенное зависание системы при попытке запустить 3D приложение. Пожалуй, это перебор. Надо откатиться назад.  2) Выпадение полигонов или зависание системы через некоторое время. Проверьте температуру чипа. Если дополнительное охлаждение не помогло, откатываемся назад.  3) Нормальная работа. Теперь надо протестировать чип в критических условиях. Для видеопамяти:  1) Появление мусора на экране в 2D и зависание в 3D. Многовато будет для вашей видеопамяти.  2) Текстуры в 3D "искрят" либо отображаются некорректно. Проверьте нагрев чипов либо откатитесь назад.  3) Нормальная работа. Как и в случае с ядром надо протестировать память в критических условиях. Для того чтобы найти "золотую середину" которая сочетает в себе максимальную скорость и стабильность рекомендую поступить следующим образом. Постепенно, с шагом 5Мгц увеличивать частоту видеопамяти (с помощью PowerStrip или любой другой подобной утилиты) пока вы не наткнетесь на нестабильную работу. Затем сделать шаг назад и протестировать эту установку в критических условиях. При нестабильной работе откатится еще на шаг назад. Приведенные выше рекомендации, в полной мере относятся и к разгону ядра.  Чтобы протестировать видеоплату в критических условиях придется воспользоваться какой-либо современной 3D игрой, например Quake III Arena. Достаточно прогнать встроенное демо на максимальном разрешении в течении 20 минут чтобы приблизительно знать насколько стабильна система. Чтобы быть уверенным точно, нужно запускать тест минимум на ночь. Если использовать 16 бит цвет, то нагрузка в общем случае будет больше на ядро, если 32 битный, то на видеопамять.  Мини FAQ по теме разгона. Q: Можно ли повредить процессор или видеоплату разгоном?  A: Теоретически можно, практически нет. Если соблюдать осторожность, не использовать подачу повышенного напряжения и обеспечивать достаточное охлаждение, то вероятность необратимых последствий практически равна нулю.  Q: Почему вообще возможен разгон?  A: Объясним это примере производства процессоров. Принцип разделения на модели в пределах одной линейки состоит в следующем: первым делом маркетинговый отдел планирует выпуск определенного количества моделей, например 100 шт. – 450 Мhz, 50 шт. – 500 Mhz, 25 шт. – 550 Mhz и 5 шт. – 600 Mhz. Разумеется с течением времени старые модели уходят и на их место приходят новые. На заводе при производстве кристаллов, их тестируют при повышенной температуре и частоте и те из которых, например, стабильно работают на 700 Mhz – маркируют как 600, и так далее, в соответствии с номинальной частотой. Причем, если число процессоров работающих на 700 будет слишком велико и превысит план, то эти кристаллы пойдут на изготовление младших моделей. Таким образом когда технологический процесс хорошо отлажен, то весьма вероятно, что среди 450-х чипов может быть значительное количество чипов работающих на значительно более высокой частоте. Кроме того, любой чип имеет стандартный запас прочности по частоте для обеспечения большей надежности систем. 

  1. Какие типы видеоадаптеров используются в IBM PC? [4, 128-172], [13, 30-102]

  2. На что следует обратить внимание при покупке монитора? [4, 128-172], [13, 30-102]

  3. Какие параметры характеризуют звуковую карту? [4, 128-172], [13, 30-102]

  4. Как устроен и работает современный 3.5" дисковод? [4, 128-172]

Основные внутренние элементы дисковода - дискетная рама, шпиндельный двигатель, блок головок с приводом и плата электроники. Шпиндельный двигатель - плоский многополюсный, с постоянной скоростью вращения 300 об/мин. Двигатель привода блока головок - шаговый, с червячной, зубчатой или ленточной передачей. Для опознания свойств дискеты на плате электроники возле переднего торца дисковода установлено три механических нажимных датчика: два - под отверстиями защиты и плотности записи, и третий - за датчиком плотности - для определения момента опускания дискеты. Вставляемая в щель дискета попадает внутрь дискетной рамы, где с нее сдвигается защитная шторка, а сама рама при этом снимается со стопора и опускается вниз - металлическое кольцо дискеты при этом ложится на вал шпиндельного двигателя, а нижняя поверхность дискеты - на нижнюю головку (сторона 0). Одновременно освобождается верхняя головка, которая под действием пружины прижимается к верхней стороне дискеты. На большинстве дисководов скорость опускания рамы никак не ограничена, из-за чего головки наносят ощутымый удар по поверхностям дискеты, а это сильно сокращает срок их надежной работы. В некоторых моделях дисководов (Teac, Panasonic, ALPS) предусмотрен замедлитель-микролифт для плавного опускания рамы. Для продления срока службы дискет и головок в дисководах без микролифта рекомендуется при вставлении дискеты придерживать пальцем кнопку дисковода, не давая раме опускаться слишком резко. На валу шпиндельного двигателя имеется кольцо с магнитным замком, который в начале вращения двигателя плотно захватывает кольцо дискеты, одновременно центрируя ее на валу. В большинстве моделей дисководов сигнал от датчика опускания дискеты вызывает кратковременный запуск двигателя с целью ее захвата и центрирования. Дисковод соединяется с контроллером при помощи 34-проводного кабеля, в котором четные провода являются сигнальными, а нечетные - общими. Общий вариант интерфейса предусматривает подключение к контроллеру до четырех дисководов, вариант для IBM PC - до двух. В общем варианте дисководы подключаются полностью параллельно друг другу, а номер дисковода (0..3) задается перемычками на плате электроники; в варианте для IBM PC оба дисковода имеют номер 1, но подключаются при помощи кабеля, в котором сигналы выбора (провода 10-16) перевернуты между разъемами двух дисководов. Иногда на разъеме дисковода удаляется контакт 6, играющий в этом случае роль механического ключа. Интерфейс дисковода достаточно прост и включает сигналы выбора устройства (четыре устройства в общем случае, два - в варианте для IBM PC), запуска двигателя, перемещения головок на один шаг, включения записи, считываемые/записываемые данные, а также информационные сигналы от дисковода - начало дорожки, признак установки головок на нулевую (внешнюю) дорожку, сигналы с датчиков и т.п. Вся работа по кодированию информации, поиску дорожек и секторов, синхронизации, коррекции ошибок выполняется контроллером. Стандартный формат дискеты типа HD (High Density - высокая плотность) - 80 дорожек на каждой из сторон, 18 секторов по 512 байт на дорожке. Уплотненный формат - 82 или 84 дорожки, до 20 секторов по 512 байт, или до 11 секторов по 1024 байта.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]