Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OSNOV_TEORII_TEPLOOBMEN3.doc
Скачиваний:
5
Добавлен:
20.11.2019
Размер:
758.78 Кб
Скачать

1.5. Конвективный теплообмен

Конвективным теплообменом называют перенос теплоты массой жидкости (газа) нагретой или охлажденной у твердой поверхности. Направление теплового потока при этом будет зависеть от температур жидкости и стенки.

Различают естественную и вынужденную конвекцию. Естественная конвекция возникает в результате неоднородности теплового поля под действием внешних сил в частности гравитационных сил.

Вынужденная конвекция возникает в результате приложения к массе жидкости внешних сил (использование увеличении интенсивности движения насосов, вентиляторов и т.п.).

Снимки конвекции

Рис.4

Тепловой поток при конвективном теплообмене, определяется по формуле:

, (1.18)

где - коэффициент теплоотдачи;

tж – температура теплоносителя в ;

- температура стенки в ;

F – поверхность соприкосновения теплоносителя со стенкой в м2.

- температура стенки

Из данного уравнения можно определить разность и температуру стенки :

- (1.19)

Формула справедлива как при конвективном теплообмене от жидкости к стенке, так и при конвективном теплообмене от стенки к жидкости.

Коэффициент теплоотдачи представляет собой величину теплового потока. В отличие от коэффициента теплопроводности коэффициент теплоотдачи - сложная величина. Он учитывает следующие факторы: режим течения жидкости (ламинарный или турбулентный); физические параметры жидкости (теплопроводность , вязкость , плотность , теплоемкость ср., коэффициент объемного расширения ), температуру жидкости и поверхности , ; форму Ф и линейные размеры обтекаемой поверхности l.

Функционально такую зависимость можно выразить в виде:

(1.20)

Существенное значение при конвективном теплообмене имеет режим движения жидкости. При турбулентном движении теплообмен идет более интенсивно. При ламинарном движении менее интенсивно. Наличие пограничного слоя большой толщины у поверхности стенки увеличивает ее термическое сопротивление.

1.6 Теплообмен излучением

Теплообмен излучением представляет собой процесс взаимного облучения двух или нескольких тел виде электромагнитных волн. Этот вид теплообмена связан с взаимным превращением энергии: тепловой энергии в излучение и излучения в тепловую энергию. Интенсивность лучистого теплообмена увеличивается по мере повышения температуры тела, испускающего электромагнитные волны.

Лучистая энергия, попадая на какое-нибудь тело, частично поглощается этим телом, частично отражается и частично проходит через него. Энергия, поглощаемая телом, переходит в тепловую энергию.

Рис.5.

Обозначая через Q0 общее количество излучаемой энергии, поступающей на тело, а через , и – соответственно количество лучистой энергии, поглощенной, отраженной и прошедшей через него:

. (1.21)

Записав уравнение (1.21) в относительном виде, получим

(1.22)

или

,

где - поглощательная способность тела;

- отражательная способность тела;

- пропускная способность тела.

Коэффициенты и являются безразмерными коэффициентами поглощения, отражения и пропускания. В зависимости от конкретных физических свойств тела, его температуры и длины волны падающего излучения численные значения коэффициентов и могут быть различными и равными нулю.

Если =1 ( ), то тело полностью поглощает все падающие на него тепловые лучи и называется абсолютно черным.

Если ( ), то тело полностью отражает падающие на него тепловые лучи. Такое тело называют зеркальным (если отражение правильное, не рассеянное) либо абсолютно-белым (если отражение рассеянное – диффузное).

Если, ( ), то тело пропускает через себя все падающие на него лучи. Такое тело называют абсолютно-проницаемым (прозрачным) или диатермичным. Воздух – практически прозрачная среда, твердые тела и жидкости непрозрачны. Многие тела прозрачны только для определенных волн. Так, оконное стекло пропускает световые лучи и почти непрозрачно для ультрафиолетового и длинноволнового инфракрасного излучения.

Основные законы лучистого теплообмена были открыты И. Стефаном и Л.Больцманом

Закон Стефана-Больцмана. И. Стефан экспериментально, а Л.Больцман теоретически установили связь излучения абсолютно черного тела Е0 с температурой. В технических расчетах закон Стефана-Больцмана используется в следующем виде:

, (1.23)

где С0 – коэффициент излучения абсолютно черного тела,

Существующие в природе тела, являются серыми, по интенсивности излучения отличаются от абсолютно черного тела. Однако закон Стефана-Больцмана применим и к серым телам, если ввести коэффициент степени черноты и учесть тем самым их степень черноты:

, (1.24)

где а - коэффициент степени черноты

Е – способность излучения серого тела;

Е0 – излучения способность абсолютно черного тела.

Применительно к реальным телам закон Стефана-Больцмана имеет следующий вид:

, (1.25)

где С=аС0 – коэффициент излучения.

Величина степени черноты зависит от природы тела, температуры и состояния его поверхности.

По закону Ламберта устанавливается взаимосвязь между излучаемой телом энергии от ориентации. Максимальное излучение единицей поверхности происходит по направлению нормали.

. (1.26)

Таким образом, закон Ламберта определяет зависимость излучаемой телом энергии от направления.

По закону Кирхгофа отношение способности излучения Е к его способности поглощения для всех тел одинаково и равно способности излучения абсолютно черного тела Е0 при той же температуре и зависит только от температуры, т.е.

(1.27)

Так как , то для всех серых тел , т.е. поглощательная способность тела численно равна его степени черноты.

Интенсивность лучистого теплообмена между твердыми телами зависит от их температуры, конфигурации, размеров, состояния поверхностей, взаимного расположения и расстояния между ними.

Эффективным средством уменьшения интенсивности теплообмена служат различного рода защитные экраны.

При наличии экрана лучистое тепло передается от стенки к экрану, а от экрана к другой стенке.

Если материал экрана и стенки сходны по качеству и материалу, то экран уменьшит лучистый тепловой поток в 2 раза.

Если поверхность экрана имеет очень небольшой коэффициент поглощения и хорошо отражает лучистую энергию, никелированный или полированный алюминиевый лист, то один экран может уменьшить тепловой поток в 10-30 раз.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]